OneNAND SPECIFICATION

Density	Part No.	Vcc(core & IO)	Temperature	PKG
512Mb	KFG1216Q2M-DCB	1.8V(1.7V~1.95V)	Commercial	63FBGA(LF)
	KFG1216Q2M-DEB	1.8V(1.7V~1.95V)	Extended	63FBGA(LF)
	KFG1216D2M-DCB	2.65V(2.4V~2.9V)	Commercial	63FBGA(LF)
	KFG1216D2M-DEB	2.65V(2.4V~2.9V)	Extended	63FBGA(LF)
	KFG1216U2M-DCB	3.3V(2.7V~3.6V)	Commercial	63FBGA(LF)
	KFG1216U2M-DIB	3.3V(2.7V~3.6V)	Industrial	63FBGA(LF)
1Gb	KFH1G16Q2M-DCB	1.8V(1.7V~1.95V)	Commercial	N/A
	KFH1G16Q2M-DEB	1.8V(1.7V~1.95V)	Extended	N/A
	KFH1G16D2M-DCB	2.65V(2.4V~2.9V)	Commercial	N/A
	KFH1G16D2M-DEB	2.65V(2.4V~2.9V)	Extended	N/A
	KFH1G16U2M-DCB	3.3V(2.7V~3.6V)	Commercial	N/A
	KFH1G16U2M-DIB	3.3V(2.7V~3.6V)	Industrial	N/A

Version: Ver. 1.0 Date: August 5th, 2004

Document Title

OneNAND

Revision History

Revision No.	History	Draft Date	Remark
0.0	Initial issue.	Jan. 07, 2004	Preliminary
0.0.1	Add the "Invalid block management" and "Error management in read and write operation" Add the restriction in addressing for program operation. Add the asynchronous write and latched asynchronous write mode timing diagram. Define new parameters in asynchronous write modetCH1: 10ns, tCH2: 0ns	Jan. 29, 2004	Preliminary
0.0.2	Add the dual operation diagram. Add the block replacement diagram	Jan. 30, 2004	Preliminary
0.0.3	Edit the block replacement diagram Add the 3.3V product.	Feb. 03, 2004	Preliminary
0.1	1. Excluded Cache Program Operation 2. Added the descriptions for below operations Reset Write Protection Burst Read Latency Dual Operation Invalid block definition and Identification method Error in write or read operation ECC 3. Revised program sequence 4. Some AC parameters are changed. tACH: 9ns>7ns, tCES: 7ns>9ns, tAAVDS: 5ns>7ns tDS: 30ns>10ns, tDH: 0ns>4ns 5. Define new AC parameter. tAWES(Address hold time in AVD low case of asynchronous write mode) Min. 0ns	Feb.11, 2004	Preliminary
0.1.1	1. Correct an errata Ball pitch of packge is corrected. 0.5mm> 0.8mm 2. Edit the timing diagram of burst read wrop around (Figure 23.24).	Mar.9, 2004	Preliminary
	2. Edit the timing diagram of burst read wrap around.(Figure 23,24)		
0.2	1. The specification of 2.7V device is added.	Mar. 22, 2004	Preliminary
0.3	 The specification of 3.3V device is deleted. Correct some typos. 	Mar. 31, 2004	Preliminary

The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near you.

Document Title

OneNAND

Revision History

5	112.4	D . (1 D . 1	
Revision No.	HISTORY	<u>Draft Date</u>	<u>Remark</u>
0.4	1. Corrected the errata 2. Added spare assignment information in detail 3. Added NAND array memory map 4. Added manufacturer ID for CS as 00ECh 5. Added stepping ID for CS in version ID register 6. Devided default status of interrupt status register by Warm,Hot reset and Colde reset 7. Revised Load operation flow chart 8. Revised Program operation flow chart 9. Deleted DBS setting step in Copy-back operation 10. Added OTP description 11. Revised OTP Load and Program flow chart 12. Added INT guidance 13. ECC description is revised 14. Added Data Protection Scheme during Power-down 15. Added DC/AC parameters	June 22, 2004	Preliminary
1.0	 Deleted 2.7V product Added 2.65V product Added 3.3V product and industrial temperature in 3.3V product Deleted Unlock/Lock BootRAM command Added DBS setting step in Copy-back operation Added 2.65V/3.3V DC parameters Revised tCES from 9ns to 7ns Deleted tOEH in asynchronous read operation Revised NOP from 4 times per each main and spare in a page to 2 times per sector Revised Write Protection status description Added DDP selection and operation guidance Added 1Gb DDP device ID Added INT bit status in Cold Reset operation Moved Interrupt register setting before inputting command in all flow charts Revised Dual operation diagrams Added and revised the asynchronous read operation timing diagram 	August 5, 2004	Final

17. Revised the asynchronous write operation timing diagram18. Added the tREADY parameter in Hot Reset operation

The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near you.

1. FEATURES

♦ Architecture

• Design Technology: 0.12um

Voltage Supply

- 1.8V device(KFG1216Q2M) : 1.7V~1.95V - 2.65V device(KFG1216D2M) : 2.4V~2.9V - 3.3V device(KFG1216U2M) : 2.7V~3.6V

Organization

- Host Interface:16bit

- Little endian addressing
- Internal BufferRAM(5K Bytes)
- 1KB for BootRAM, 4KB for DataRAM

• NAND Array

- Page Size : (2K+64)bytes- Block Size : (128K+4K)bytes

♦ Performance

- Host Interface type
- Synchronous Burst Read
- : Clock Frequency: up to 54MHz
- : Linear Burst 4, 8, 16, 32 words with wrap-around
- : Continuous Sequential Burst(1K words)
- Asynchronous Random Read
- : Access time of 76ns
- Asynchronous Random Write
- Programmable Read latency
- Multiple Sector Read
- Read multiple sectors by Sector Count Register(up to 4 sectors)
- Reset Mode
- Cold Reset / Warm Reset / Hot Reset / NAND Flash Reset
- Power dissipation (typical values)
- Standby current : 10uA@1.8V device, 20uA@2.65V/3.3V device
- Synchronous Burst Read current(54MHz) : 12mA@1.8V device, 25mA@2.65V/3.3V device
- Load current: 10mA@1.8V device, 15mA@2.65V/3.3V device
- Program current: 10mA@1.8V device, 15mA@2.65V/3.3V device
- Erase current: 10mA@1.8V device, 15mA@2.65V/3.3V device

♦ Hardware Features

- Voltage detector generating internal reset signal from Vcc
- Hardware reset input (RP)
- Data Protection
- Write Protection for BootRAM
- Write Protection mode for NAND Flash Array
- Write protection during power-up
- Write protection during power-down
- User-controlled One Time Programmable(OTP) area
- Internal 2bit EDC / 1bit ECC
- Internal Bootloader supports Booting Solution in system

♦ Software Features

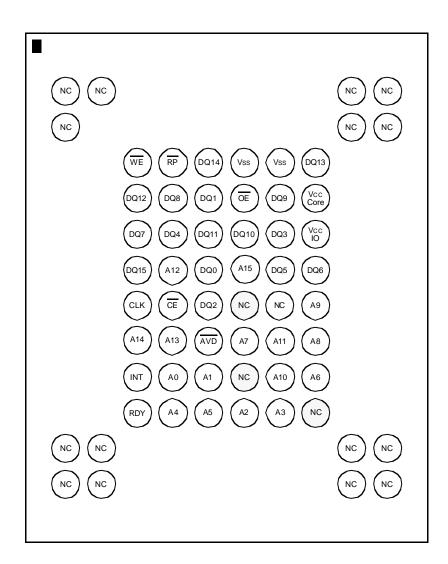
- Handshaking Feature
- INT pin: Indicates Ready / Busy of OneNAND
- Polling method: Provides a software method of detecting the Ready / Busy status of OneNAND
- Detailed chip information by ID register

◆ Packaging

- Package
- 63ball, 9.5mm x 12mm x max 1.0mmt , 0.8mm ball pitch FBGA

2. GENERAL DESCRIPTION

OneNAND is a single-die chip with standard NOR Flash interface using NAND Flash Array. This device is comprised of logic and NAND Flash Array and 5KB internal BufferRAM. 1KB BootRAM is used for reserving bootcode, and 4KB DataRAM is used for buffering data. The operating clock frequency is up to 54MHz. This device is X16 interface with Host, and has the speed of ~76ns random access time. Actually, it is accessible with minimum 4clock latency(host-driven clock for synchronous read), but this device adopts the appropriate wait cycles by programmable read latency. OneNAND provides the multiple sector read operation by assigning the number of sectors to be read in the sector counter register. The device includes one block sized OTP(One Time Programmable), which can be used to increase system security or to provide identification capabilities.

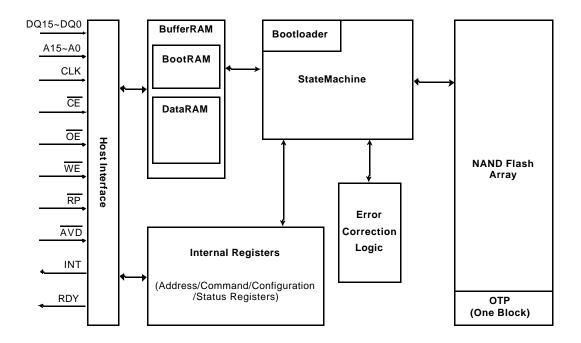

3. PIN DESCRIPTION

Pin Name	Type	Nameand Description
Host Interface		•
A15~A0	I	Address Inputs - Inputs for addresses during read operation, which are for addressing BufferRAM & Register.
DQ15~DQ0	I/O	Data Inputs/Outputs - Inputs data during program and commands during all operations, outputs data during memory array/ register read cycles. Data pins float to high-impedance when the chip is deselected or outputs are disabled.
INT	0	Interrupt Notifying Host when a command has completed. It is open drain output and does not float to hi-z condition when the chip is deselected or when outputs are disabled.
RDY	0	Ready Indicates data valid in synchronous read modes and is activated while CE is low
CLK	I	Clock CLK synchronizes the device to the system bus frequency in synchronous read mode. The first rising edge of CLK in conjunction with AVD low latches address input.
WE	I	Write Enable WE controls writes to the bufferRAM and registers. Datas are latched on the WE pulse's rising edge
ĀVD	I	Address Valid Detect Indicates valid address presence on address inputs. During asynchronous read operation, all addresses are latched on AVD's rising edge, and during synchronous read operation, all addresses are latched on CLK's rising edge while AVD is held low for one clock cycle. > Low: for asynchronous mode, indicates valid address; for burst mode, causes starting address to be latched on rising edge on CLK > High: device ignores address inputs
RP	I	Reset Pin When low, RP resets internal operation of OneNAND. RP status is don't care during power-up and bootloading.
CE	-	Chip Enable CE-low activates internal controll logic, and CE-high deselects the device, places it in standby state, and places A/DQ in Hi-Z
ŌE	1	Output Enable OE-low enables the device's output data buffers during a read cycle.
Power Supply		
Vcc-Core		Power for OneNAND Core This is the power supply for OneNAND Core.
Vcc-IO		Power for OneNAND I/O This is the power supply for OneNAND I/O Vcc-IO is internally connected to Vcc-Core, thus should be connected to the same power supply.
Vss		Ground for OneNAND
etc		
DNU		Do Not Use Leave it disconnected. These pins are used for testing.
NC		No Connection Lead is not internally connected.

NOTE:
Do not leave power supply(VCC, VSS) disconnected.

4. PIN CONFIGURATION

(TOP VIEW, Balls Facing Down)
63ball FBGA OneNAND Chip


63ball, 9.5mm x 12mm x max 1.0mmt, 0.8mm ball pitch FBGA

TERMS, ABBREVIATIONS AND DEFINITIONS

B (capital letter)	Byte, 8bits
W (capital letter)	Word, 16bits
b (lower-case letter)	Bit
ECC	Error Correction Code
Calculated ECC	ECC which has been calculated during read or program access
Written ECC	ECC which has been stored as data in the NAND Flash Array or in the BufferRAM
BufferRAM	Internal Buffer in OneNAND, consists of BootRAM and DataRAM
BootRAM	for reserving Bootcode, 1KB size
DataRAM	for data buffering, 4KB size
Memory	NAND Flash array which is embedded on OneNAND
Sector	Partial unit of page, of which size is 512B for main area and 16B for spare area data. It is the minimum Load/Program/Copy-Back program unit while one~four sector operation is available
Data unit	Possible data unit to be read from memory to BufferRAM or to be programmed to memory. - 528B of which 512B is in main area and 16B in spare area - 1056B of which 1024B is in main area and 32B in spare area - 1584B of which 1536B is in main area and 48B in spare area - 2112B of which 2048B is in main area and 64B in spare area

5. BLOCK DIAGRAM

- Host Interface
- BufferRAM(BootRAM, DataRAM)
- Command and status registers
- State Machine (Bootloader is included)
- Error Correction Logic
- Memory(NAND Flash Array, OTP)

NOTE:

1) At cold reset, bootloader copies boot code(1K byte size) from NAND Flash Array to BootRAM.

Figure 1. Internal Block Diagram

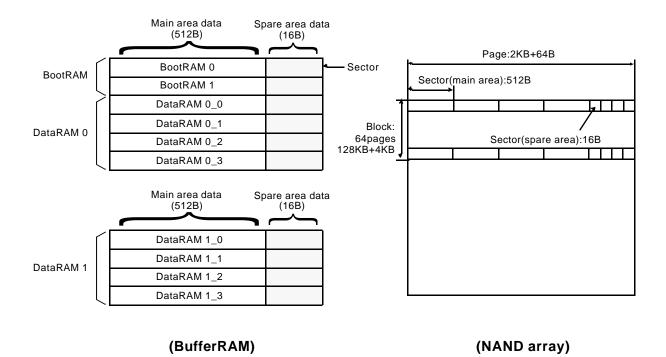
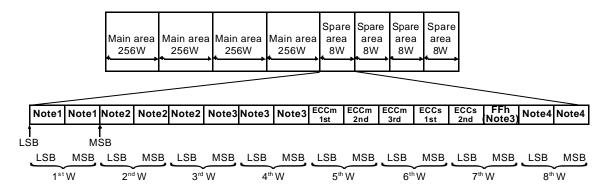



Figure 2. BufferRAM and NAND array structure

NOTE:

- 1) The 1st word of spare area in 1st and 2nd page of every invalid block is reserved for the invalid block information by manufacturer. Please refer to page 63 about the details.
- 2) These words are managed by internal ECC logic. So it is recommended that the important data like LSN(Logical Sector Number) are written.
- 3) These words are reserved for the future purpose by manufacuter. These words will be dedicated to internal logic.
- 4) These words are for free usage.
- 5) The 5th, 6th and 7th words are dedicated to internal ECC logic. So these words are only readble. The other words are programmable by command.
- 6) ECCm 1st, ECCm 2nd, ECCm 3rd: ECC code for Main area data
- 7) ECCs 1st, ECCs 2nd: ECC code for 2nd and 3rd word of spare area.

Figure 3. Spare area of NAND array assignment

6.1 ADDRESS MAP For OneNAND

Division	Address (word order)	Address (byte order)	_	ze 128KB)	Usage	Description	
Main area	0000h~00FFh	00000h~001FEh	512B	1KB	BootM 0	BootRAM Main sector0	
(64KB)	0100h~01FFh	00200h~003FEh	512B	IND	BootM 1	BootRAM Main sector1	
	0200h~02FFh	00400h~005FEh	512B		DataM 0_0	DataRAM Main page0/sector0	
	0300h~03FFh	00600h~007FEh	512B		DataM 0_1	DataRAM Main page0/sector1	
	0400h~04FFh	00800h~009FEh	512B		DataM 0_2	DataRAM Main page0/sector2	
	0500h~05FFh	00A00h~00BFEh	512B	4KB	DataM 0_3	DataRAM Main page0/sector3	
	0600h~06FFh	00C00h~00DFEh	512B	465	DataM 1_0	DataRAM Main page1/sector0	
	0700h~07FFh	00E00h~00FFEh	512B		DataM 1_1	DataRAM Main page1/sector1	
	0800h~08FFh	01000h~011FEh	512B		DataM 1_2	DataRAM Main page1/sector2	
	0900h~09FFh	01200h~013FEh	512B		DataM 1_3	DataRAM Main page1/sector3	
	0A00h~7FFFh	01400h~0FFFEh	59KB	59KB	Reserved	Reserved	
Spare area	8000h~8007h	10000h~1000Eh	16B	32B	BootS 0	BootRAM Spare sector0	
(8KB)	8008h~800Fh	10010h~1001Eh	16B	325	BootS 1	BootRAM Spare sector1	
	8010h~8017h	10020h~1002Eh	16B		DataS 0_0	DataRAM Spare page0/sector0	
	8018h~801Fh	10030h~1003Eh	16B		DataS 0_1	DataRAM Spare page0/sector1	
	8020h~8027h	10040h~1004Eh	16B		DataS 0_2	DataRAM Spare page0/sector2	
	8028h~802Fh	10050h~1005Eh	16B	128B	DataS 0_3	DataRAM Spare page0/sector3	
	8030h~8037h	10060h~1006Eh	16B	1206	DataS 1_0	DataRAM Spare page1/sector0	
	8038h~803Fh	10070h~1007Eh	16B		DataS 1_1	DataRAM Spare page1/sector1	
	8040h~8047h	10080h~1008Eh	16B		DataS 1_2	DataRAM Spare page1/sector2	
	8048h~804Fh	10090h~1009Eh	16B		DataS 1_3	DataRAM Spare page1/sector3	
	8050h~8FFFh	100A0h~11FFEh	8032B	8032B	Reserved	Reserved	
Reserved (24KB)	9000h~BFFFh	12000h~17FFEh	24KB	24KB	Reserved	Reserved	
Reserved (8KB)	C000h~CFFFh	18000h~19FFEh	8KB	8KB	Reserved	Reserved	
Reserved (16KB)	D000h~EFFFh	1A000h~1DFFEh	16KB	16KB	Reserved	Reserved	
Registers (8KB)	F000h~FFFFh	1E000h~1FFFEh	8KB	8KB	Registers	Registers	

NOTE 1) Data output is unknown while host reads a register bit of reserved area

6.2 ADDRESS MAP For OneNAND NAND Array (word order)

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block0	0000h	0000h~00FFh	128KB	Block32	0020h	0000h~00FFh	128KB
Block1	0001h	0000h~00FFh	128KB	Block33	0021h	0000h~00FFh	128KB
Block2	0002h	0000h~00FFh	128KB	Block34	0022h	0000h~00FFh	128KB
Block3	0003h	0000h~00FFh	128KB	Block35	0023h	0000h~00FFh	128KB
Block4	0004h	0000h~00FFh	128KB	Block36	0024h	0000h~00FFh	128KB
Block5	0005h	0000h~00FFh	128KB	Block37	0025h	0000h~00FFh	128KB
Block6	0006h	0000h~00FFh	128KB	Block38	0026h	0000h~00FFh	128KB
Block7	0007h	0000h~00FFh	128KB	Block39	0027h	0000h~00FFh	128KB
Block8	0008h	0000h~00FFh	128KB	Block40	0028h	0000h~00FFh	128KB
Block9	0009h	0000h~00FFh	128KB	Block41	0029h	0000h~00FFh	128KB
Block10	000Ah	0000h~00FFh	128KB	Block42	002Ah	0000h~00FFh	128KB
Block11	000Bh	0000h~00FFh	128KB	Block43	002Bh	0000h~00FFh	128KB
Block12	000Ch	0000h~00FFh	128KB	Block44	002Ch	0000h~00FFh	128KB
Block13	000Dh	0000h~00FFh	128KB	Block45	002Dh	0000h~00FFh	128KB
Block14	000Eh	0000h~00FFh	128KB	Block46	002Eh	0000h~00FFh	128KB
Block15	000Fh	0000h~00FFh	128KB	Block47	002Fh	0000h~00FFh	128KB
Block16	0010h	0000h~00FFh	128KB	Block48	0030h	0000h~00FFh	128KB
Block17	0011h	0000h~00FFh	128KB	Block49	0031h	0000h~00FFh	128KB
Block18	0012h	0000h~00FFh	128KB	Block50	0032h	0000h~00FFh	128KB
Block19	0013h	0000h~00FFh	128KB	Block51	0033h	0000h~00FFh	128KB
Block20	0014h	0000h~00FFh	128KB	Block52	0034h	0000h~00FFh	128KB
Block21	0015h	0000h~00FFh	128KB	Block53	0035h	0000h~00FFh	128KB
Block22	0016h	0000h~00FFh	128KB	Block54	0036h	0000h~00FFh	128KB
Block23	0017h	0000h~00FFh	128KB	Block55	0037h	0000h~00FFh	128KB
Block24	0018h	0000h~00FFh	128KB	Block56	0038h	0000h~00FFh	128KB
Block25	0019h	0000h~00FFh	128KB	Block57	0039h	0000h~00FFh	128KB
Block26	001Ah	0000h~00FFh	128KB	Block58	003Ah	0000h~00FFh	128KB
Block27	001Bh	0000h~00FFh	128KB	Block59	003Bh	0000h~00FFh	128KB
Block28	001Ch	0000h~00FFh	128KB	Block60	003Ch	0000h~00FFh	128KB
Block29	001Dh	0000h~00FFh	128KB	Block61	003Dh	0000h~00FFh	128KB
Block30	001Eh	0000h~00FFh	128KB	Block62	003Eh	0000h~00FFh	128KB
Block31	001Fh	0000h~00FFh	128KB	Block63	003Fh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block64	0040h	0000h~00FFh	128KB	Block96	0060h	0000h~00FFh	128KB
Block65	0041h	0000h~00FFh	128KB	Block97	0061h	0000h~00FFh	128KB
Block66	0042h	0000h~00FFh	128KB	Block98	0062h	0000h~00FFh	128KB
Block67	0043h	0000h~00FFh	128KB	Block99	0063h	0000h~00FFh	128KB
Block68	0044h	0000h~00FFh	128KB	Block100	0064h	0000h~00FFh	128KB
Block69	0045h	0000h~00FFh	128KB	Block101	0065h	0000h~00FFh	128KB
Block70	0046h	0000h~00FFh	128KB	Block102	0066h	0000h~00FFh	128KB
Block71	0047h	0000h~00FFh	128KB	Block103	0067h	0000h~00FFh	128KB
Block72	0048h	0000h~00FFh	128KB	Block104	0068h	0000h~00FFh	128KB
Block73	0049h	0000h~00FFh	128KB	Block105	0069h	0000h~00FFh	128KB
Block74	004Ah	0000h~00FFh	128KB	Block106	006Ah	0000h~00FFh	128KB
Block75	004Bh	0000h~00FFh	128KB	Block107	006Bh	0000h~00FFh	128KB
Block76	004Ch	0000h~00FFh	128KB	Block108	006Ch	0000h~00FFh	128KB
Block77	004Dh	0000h~00FFh	128KB	Block109	006Dh	0000h~00FFh	128KB
Block78	004Eh	0000h~00FFh	128KB	Block110	006Eh	0000h~00FFh	128KB
Block79	004Fh	0000h~00FFh	128KB	Block111	006Fh	0000h~00FFh	128KB
Block80	0050h	0000h~00FFh	128KB	Block112	0070h	0000h~00FFh	128KB
Block81	0051h	0000h~00FFh	128KB	Block113	0071h	0000h~00FFh	128KB
Block82	0052h	0000h~00FFh	128KB	Block114	0072h	0000h~00FFh	128KB
Block83	0053h	0000h~00FFh	128KB	Block115	0073h	0000h~00FFh	128KB
Block84	0054h	0000h~00FFh	128KB	Block116	0074h	0000h~00FFh	128KB
Block85	0055h	0000h~00FFh	128KB	Block117	0075h	0000h~00FFh	128KB
Block86	0056h	0000h~00FFh	128KB	Block118	0076h	0000h~00FFh	128KB
Block87	0057h	0000h~00FFh	128KB	Block119	0077h	0000h~00FFh	128KB
Block88	0058h	0000h~00FFh	128KB	Block120	0078h	0000h~00FFh	128KB
Block89	0059h	0000h~00FFh	128KB	Block121	0079h	0000h~00FFh	128KB
Block90	005Ah	0000h~00FFh	128KB	Block122	007Ah	0000h~00FFh	128KB
Block91	005Bh	0000h~00FFh	128KB	Block123	007Bh	0000h~00FFh	128KB
Block92	005Ch	0000h~00FFh	128KB	Block124	007Ch	0000h~00FFh	128KB
Block93	005Dh	0000h~00FFh	128KB	Block125	007Dh	0000h~00FFh	128KB
Block94	005Eh	0000h~00FFh	128KB	Block126	007Eh	0000h~00FFh	128KB
Block95	005Fh	0000h~00FFh	128KB	Block127	007Fh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block128	0080h	0000h~00FFh	128KB	Block160	00A0h	0000h~00FFh	128KB
Block129	0081h	0000h~00FFh	128KB	Block161	00A1h	0000h~00FFh	128KB
Block130	0082h	0000h~00FFh	128KB	Block162	00A2h	0000h~00FFh	128KB
Block131	0083h	0000h~00FFh	128KB	Block163	00A3h	0000h~00FFh	128KB
Block132	0084h	0000h~00FFh	128KB	Block164	00A4h	0000h~00FFh	128KB
Block133	0085h	0000h~00FFh	128KB	Block165	00A5h	0000h~00FFh	128KB
Block134	0086h	0000h~00FFh	128KB	Block166	00A6h	0000h~00FFh	128KB
Block135	0087h	0000h~00FFh	128KB	Block167	00A7h	0000h~00FFh	128KB
Block136	0088h	0000h~00FFh	128KB	Block168	00A8h	0000h~00FFh	128KB
Block137	0089h	0000h~00FFh	128KB	Block169	00A9h	0000h~00FFh	128KB
Block138	008Ah	0000h~00FFh	128KB	Block170	00AAh	0000h~00FFh	128KB
Block139	008Bh	0000h~00FFh	128KB	Block171	00ABh	0000h~00FFh	128KB
Block140	008Ch	0000h~00FFh	128KB	Block172	00ACh	0000h~00FFh	128KB
Block141	008Dh	0000h~00FFh	128KB	Block173	00ADh	0000h~00FFh	128KB
Block142	008Eh	0000h~00FFh	128KB	Block174	00AEh	0000h~00FFh	128KB
Block143	008Fh	0000h~00FFh	128KB	Block175	00AFh	0000h~00FFh	128KB
Block144	0090h	0000h~00FFh	128KB	Block176	00B0h	0000h~00FFh	128KB
Block145	0091h	0000h~00FFh	128KB	Block177	00B1h	0000h~00FFh	128KB
Block146	0092h	0000h~00FFh	128KB	Block178	00B2h	0000h~00FFh	128KB
Block147	0093h	0000h~00FFh	128KB	Block179	00B3h	0000h~00FFh	128KB
Block148	0094h	0000h~00FFh	128KB	Block180	00B4h	0000h~00FFh	128KB
Block149	0095h	0000h~00FFh	128KB	Block181	00B5h	0000h~00FFh	128KB
Block150	0096h	0000h~00FFh	128KB	Block182	00B6h	0000h~00FFh	128KB
Block151	0097h	0000h~00FFh	128KB	Block183	00B7h	0000h~00FFh	128KB
Block152	0098h	0000h~00FFh	128KB	Block184	00B8h	0000h~00FFh	128KB
Block153	0099h	0000h~00FFh	128KB	Block185	00B9h	0000h~00FFh	128KB
Block154	009Ah	0000h~00FFh	128KB	Block186	00BAh	0000h~00FFh	128KB
Block155	009Bh	0000h~00FFh	128KB	Block187	00BBh	0000h~00FFh	128KB
Block156	009Ch	0000h~00FFh	128KB	Block188	00BCh	0000h~00FFh	128KB
Block157	009Dh	0000h~00FFh	128KB	Block189	00BDh	0000h~00FFh	128KB
Block158	009Eh	0000h~00FFh	128KB	Block190	00BEh	0000h~00FFh	128KB
Block159	009Fh	0000h~00FFh	128KB	Block191	00BFh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block192	00C0h	0000h~00FFh	128KB	Block224	00E0h	0000h~00FFh	128KB
Block193	00C1h	0000h~00FFh	128KB	Block225	00E1h	0000h~00FFh	128KB
Block194	00C2h	0000h~00FFh	128KB	Block226	00E2h	0000h~00FFh	128KB
Block195	00C3h	0000h~00FFh	128KB	Block227	00E3h	0000h~00FFh	128KB
Block196	00C4h	0000h~00FFh	128KB	Block228	00E4h	0000h~00FFh	128KB
Block197	00C5h	0000h~00FFh	128KB	Block229	00E5h	0000h~00FFh	128KB
Block198	00C6h	0000h~00FFh	128KB	Block230	00E6h	0000h~00FFh	128KB
Block199	00C7h	0000h~00FFh	128KB	Block231	00E7h	0000h~00FFh	128KB
Block200	00C8h	0000h~00FFh	128KB	Block232	00E8h	0000h~00FFh	128KB
Block201	00C9h	0000h~00FFh	128KB	Block233	00E9h	0000h~00FFh	128KB
Block202	00CAh	0000h~00FFh	128KB	Block234	00EAh	0000h~00FFh	128KB
Block203	00CBh	0000h~00FFh	128KB	Block235	00EBh	0000h~00FFh	128KB
Block204	00CCh	0000h~00FFh	128KB	Block236	00ECh	0000h~00FFh	128KB
Block205	00CDh	0000h~00FFh	128KB	Block237	00EDh	0000h~00FFh	128KB
Block206	00CEh	0000h~00FFh	128KB	Block238	00EEh	0000h~00FFh	128KB
Block207	00CFh	0000h~00FFh	128KB	Block239	00EFh	0000h~00FFh	128KB
Block208	00D0h	0000h~00FFh	128KB	Block240	00F0h	0000h~00FFh	128KB
Block209	00D1h	0000h~00FFh	128KB	Block241	00F1h	0000h~00FFh	128KB
Block210	00D2h	0000h~00FFh	128KB	Block242	00F2h	0000h~00FFh	128KB
Block211	00D3h	0000h~00FFh	128KB	Block243	00F3h	0000h~00FFh	128KB
Block212	00D4h	0000h~00FFh	128KB	Block244	00F4h	0000h~00FFh	128KB
Block213	00D5h	0000h~00FFh	128KB	Block245	00F5h	0000h~00FFh	128KB
Block214	00D6h	0000h~00FFh	128KB	Block246	00F6h	0000h~00FFh	128KB
Block215	00D7h	0000h~00FFh	128KB	Block247	00F7h	0000h~00FFh	128KB
Block216	00D8h	0000h~00FFh	128KB	Block248	00F8h	0000h~00FFh	128KB
Block217	00D9h	0000h~00FFh	128KB	Block249	00F9h	0000h~00FFh	128KB
Block218	00DAh	0000h~00FFh	128KB	Block250	00FAh	0000h~00FFh	128KB
Block219	00DBh	0000h~00FFh	128KB	Block251	00FBh	0000h~00FFh	128KB
Block220	00DCh	0000h~00FFh	128KB	Block252	00FCh	0000h~00FFh	128KB
Block221	00DDh	0000h~00FFh	128KB	Block253	00FDh	0000h~00FFh	128KB
Block222	00DEh	0000h~00FFh	128KB	Block254	00FEh	0000h~00FFh	128KB
Block223	00DFh	0000h~00FFh	128KB	Block255	00FFh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block256	0100h	0000h~00FFh	128KB	Block288	0120h	0000h~00FFh	128KB
Block257	0101h	0000h~00FFh	128KB	Block289	0121h	0000h~00FFh	128KB
Block258	0102h	0000h~00FFh	128KB	Block290	0122h	0000h~00FFh	128KB
Block259	0103h	0000h~00FFh	128KB	Block291	0123h	0000h~00FFh	128KB
Block260	0104h	0000h~00FFh	128KB	Block292	0124h	0000h~00FFh	128KB
Block261	0105h	0000h~00FFh	128KB	Block293	0125h	0000h~00FFh	128KB
Block262	0106h	0000h~00FFh	128KB	Block294	0126h	0000h~00FFh	128KB
Block263	0107h	0000h~00FFh	128KB	Block295	0127h	0000h~00FFh	128KB
Block264	0108h	0000h~00FFh	128KB	Block296	0128h	0000h~00FFh	128KB
Block265	0109h	0000h~00FFh	128KB	Block297	0129h	0000h~00FFh	128KB
Block266	010Ah	0000h~00FFh	128KB	Block298	012Ah	0000h~00FFh	128KB
Block267	010Bh	0000h~00FFh	128KB	Block299	012Bh	0000h~00FFh	128KB
Block268	010Ch	0000h~00FFh	128KB	Block300	012Ch	0000h~00FFh	128KB
Block269	010Dh	0000h~00FFh	128KB	Block301	012Dh	0000h~00FFh	128KB
Block270	010Eh	0000h~00FFh	128KB	Block302	012Eh	0000h~00FFh	128KB
Block271	010Fh	0000h~00FFh	128KB	Block303	012Fh	0000h~00FFh	128KB
Block272	0110h	0000h~00FFh	128KB	Block304	0130h	0000h~00FFh	128KB
Block273	0111h	0000h~00FFh	128KB	Block305	0131h	0000h~00FFh	128KB
Block274	0112h	0000h~00FFh	128KB	Block306	0132h	0000h~00FFh	128KB
Block275	0113h	0000h~00FFh	128KB	Block307	0133h	0000h~00FFh	128KB
Block276	0114h	0000h~00FFh	128KB	Block308	0134h	0000h~00FFh	128KB
Block277	0115h	0000h~00FFh	128KB	Block309	0135h	0000h~00FFh	128KB
Block278	0116h	0000h~00FFh	128KB	Block310	0136h	0000h~00FFh	128KB
Block279	0117h	0000h~00FFh	128KB	Block311	0137h	0000h~00FFh	128KB
Block280	0118h	0000h~00FFh	128KB	Block312	0138h	0000h~00FFh	128KB
Block281	0119h	0000h~00FFh	128KB	Block313	0139h	0000h~00FFh	128KB
Block282	011Ah	0000h~00FFh	128KB	Block314	013Ah	0000h~00FFh	128KB
Block283	011Bh	0000h~00FFh	128KB	Block315	013Bh	0000h~00FFh	128KB
Block284	011Ch	0000h~00FFh	128KB	Block316	013Ch	0000h~00FFh	128KB
Block285	011Dh	0000h~00FFh	128KB	Block317	013Dh	0000h~00FFh	128KB
Block286	011Eh	0000h~00FFh	128KB	Block318	013Eh	0000h~00FFh	128KB
Block287	011Fh	0000h~00FFh	128KB	Block319	013Fh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block320	0140h	0000h~00FFh	128KB	Block352	0160h	0000h~00FFh	128KB
Block321	0141h	0000h~00FFh	128KB	Block353	0161h	0000h~00FFh	128KB
Block322	0142h	0000h~00FFh	128KB	Block354	0162h	0000h~00FFh	128KB
Block323	0143h	0000h~00FFh	128KB	Block355	0163h	0000h~00FFh	128KB
Block324	0144h	0000h~00FFh	128KB	Block356	0164h	0000h~00FFh	128KB
Block325	0145h	0000h~00FFh	128KB	Block357	0165h	0000h~00FFh	128KB
Block326	0146h	0000h~00FFh	128KB	Block358	0166h	0000h~00FFh	128KB
Block327	0147h	0000h~00FFh	128KB	Block359	0167h	0000h~00FFh	128KB
Block328	0148h	0000h~00FFh	128KB	Block360	0168h	0000h~00FFh	128KB
Block329	0149h	0000h~00FFh	128KB	Block361	0169h	0000h~00FFh	128KB
Block330	014Ah	0000h~00FFh	128KB	Block362	016Ah	0000h~00FFh	128KB
Block331	014Bh	0000h~00FFh	128KB	Block363	016Bh	0000h~00FFh	128KB
Block332	014Ch	0000h~00FFh	128KB	Block364	016Ch	0000h~00FFh	128KB
Block333	014Dh	0000h~00FFh	128KB	Block365	016Dh	0000h~00FFh	128KB
Block334	014Eh	0000h~00FFh	128KB	Block366	016Eh	0000h~00FFh	128KB
Block335	014Fh	0000h~00FFh	128KB	Block367	016Fh	0000h~00FFh	128KB
Block336	0150h	0000h~00FFh	128KB	Block368	0170h	0000h~00FFh	128KB
Block337	0151h	0000h~00FFh	128KB	Block369	0171h	0000h~00FFh	128KB
Block338	0152h	0000h~00FFh	128KB	Block370	0172h	0000h~00FFh	128KB
Block339	0153h	0000h~00FFh	128KB	Block371	0173h	0000h~00FFh	128KB
Block340	0154h	0000h~00FFh	128KB	Block372	0174h	0000h~00FFh	128KB
Block341	0155h	0000h~00FFh	128KB	Block373	0175h	0000h~00FFh	128KB
Block342	0156h	0000h~00FFh	128KB	Block374	0176h	0000h~00FFh	128KB
Block343	0157h	0000h~00FFh	128KB	Block375	0177h	0000h~00FFh	128KB
Block344	0158h	0000h~00FFh	128KB	Block376	0178h	0000h~00FFh	128KB
Block345	0159h	0000h~00FFh	128KB	Block377	0179h	0000h~00FFh	128KB
Block346	015Ah	0000h~00FFh	128KB	Block378	017Ah	0000h~00FFh	128KB
Block347	015Bh	0000h~00FFh	128KB	Block379	017Bh	0000h~00FFh	128KB
Block348	015Ch	0000h~00FFh	128KB	Block380	017Ch	0000h~00FFh	128KB
Block349	015Dh	0000h~00FFh	128KB	Block381	017Dh	0000h~00FFh	128KB
Block350	015Eh	0000h~00FFh	128KB	Block382	017Eh	0000h~00FFh	128KB
Block351	015Fh	0000h~00FFh	128KB	Block383	017Fh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block384	0180h	0000h~00FFh	128KB	Block416	01A0h	0000h~00FFh	128KB
Block385	0181h	0000h~00FFh	128KB	Block417	01A1h	0000h~00FFh	128KB
Block386	0182h	0000h~00FFh	128KB	Block418	01A2h	0000h~00FFh	128KB
Block387	0183h	0000h~00FFh	128KB	Block419	01A3h	0000h~00FFh	128KB
Block388	0184h	0000h~00FFh	128KB	Block420	01A4h	0000h~00FFh	128KB
Block389	0185h	0000h~00FFh	128KB	Block421	01A5h	0000h~00FFh	128KB
Block390	0186h	0000h~00FFh	128KB	Block422	01A6h	0000h~00FFh	128KB
Block391	0187h	0000h~00FFh	128KB	Block423	01A7h	0000h~00FFh	128KB
Block392	0188h	0000h~00FFh	128KB	Block424	01A8h	0000h~00FFh	128KB
Block393	0189h	0000h~00FFh	128KB	Block425	01A9h	0000h~00FFh	128KB
Block394	018Ah	0000h~00FFh	128KB	Block426	01AAh	0000h~00FFh	128KB
Block395	018Bh	0000h~00FFh	128KB	Block427	01ABh	0000h~00FFh	128KB
Block396	018Ch	0000h~00FFh	128KB	Block428	01ACh	0000h~00FFh	128KB
Block397	018Dh	0000h~00FFh	128KB	Block429	01ADh	0000h~00FFh	128KB
Block398	018Eh	0000h~00FFh	128KB	Block430	01AEh	0000h~00FFh	128KB
Block399	018Fh	0000h~00FFh	128KB	Block431	01AFh	0000h~00FFh	128KB
Block400	0190h	0000h~00FFh	128KB	Block432	01B0h	0000h~00FFh	128KB
Block401	0191h	0000h~00FFh	128KB	Block433	01B1h	0000h~00FFh	128KB
Block402	0192h	0000h~00FFh	128KB	Block434	01B2h	0000h~00FFh	128KB
Block403	0193h	0000h~00FFh	128KB	Block435	01B3h	0000h~00FFh	128KB
Block404	0194h	0000h~00FFh	128KB	Block436	01B4h	0000h~00FFh	128KB
Block405	0195h	0000h~00FFh	128KB	Block437	01B5h	0000h~00FFh	128KB
Block406	0196h	0000h~00FFh	128KB	Block438	01B6h	0000h~00FFh	128KB
Block407	0197h	0000h~00FFh	128KB	Block439	01B7h	0000h~00FFh	128KB
Block408	0198h	0000h~00FFh	128KB	Block440	01B8h	0000h~00FFh	128KB
Block409	0199h	0000h~00FFh	128KB	Block441	01B9h	0000h~00FFh	128KB
Block410	019Ah	0000h~00FFh	128KB	Block442	01BAh	0000h~00FFh	128KB
Block411	019Bh	0000h~00FFh	128KB	Block443	01BBh	0000h~00FFh	128KB
Block412	019Ch	0000h~00FFh	128KB	Block444	01BCh	0000h~00FFh	128KB
Block413	019Dh	0000h~00FFh	128KB	Block445	01BDh	0000h~00FFh	128KB
Block414	019Eh	0000h~00FFh	128KB	Block446	01BEh	0000h~00FFh	128KB
Block415	019Fh	0000h~00FFh	128KB	Block447	01BFh	0000h~00FFh	128KB

Block	Block Address	Page and Sector Address	Size	Block	Block Address	Page and Sector Address	Size
Block448	01C0h	0000h~00FFh	128KB	Block480	01E0h	0000h~00FFh	128KB
Block449	01C1h	0000h~00FFh	128KB	Block481	01E1h	0000h~00FFh	128KB
Block450	01C2h	0000h~00FFh	128KB	Block482	01E2h	0000h~00FFh	128KB
Block451	01C3h	0000h~00FFh	128KB	Block483	01E3h	0000h~00FFh	128KB
Block452	01C4h	0000h~00FFh	128KB	Block484	01E4h	0000h~00FFh	128KB
Block453	01C5h	0000h~00FFh	128KB	Block485	01E5h	0000h~00FFh	128KB
Block454	01C6h	0000h~00FFh	128KB	Block486	01E6h	0000h~00FFh	128KB
Block455	01C7h	0000h~00FFh	128KB	Block487	01E7h	0000h~00FFh	128KB
Block456	01C8h	0000h~00FFh	128KB	Block488	01E8h	0000h~00FFh	128KB
Block457	01C9h	0000h~00FFh	128KB	Block489	01E9h	0000h~00FFh	128KB
Block458	01CAh	0000h~00FFh	128KB	Block490	01EAh	0000h~00FFh	128KB
Block459	01CBh	0000h~00FFh	128KB	Block491	01EBh	0000h~00FFh	128KB
Block460	01CCh	0000h~00FFh	128KB	Block492	01ECh	0000h~00FFh	128KB
Block461	01CDh	0000h~00FFh	128KB	Block493	01EDh	0000h~00FFh	128KB
Block462	01CEh	0000h~00FFh	128KB	Block494	01EEh	0000h~00FFh	128KB
Block463	01CFh	0000h~00FFh	128KB	Block495	01EFh	0000h~00FFh	128KB
Block464	01D0h	0000h~00FFh	128KB	Block496	01F0h	0000h~00FFh	128KB
Block465	01D1h	0000h~00FFh	128KB	Block497	01F1h	0000h~00FFh	128KB
Block466	01D2h	0000h~00FFh	128KB	Block498	01F2h	0000h~00FFh	128KB
Block467	01D3h	0000h~00FFh	128KB	Block499	01F3h	0000h~00FFh	128KB
Block468	01D4h	0000h~00FFh	128KB	Block500	01F4h	0000h~00FFh	128KB
Block469	01D5h	0000h~00FFh	128KB	Block501	01F5h	0000h~00FFh	128KB
Block470	01D6h	0000h~00FFh	128KB	Block502	01F6h	0000h~00FFh	128KB
Block471	01D7h	0000h~00FFh	128KB	Block503	01F7h	0000h~00FFh	128KB
Block472	01D8h	0000h~00FFh	128KB	Block504	01F8h	0000h~00FFh	128KB
Block473	01D9h	0000h~00FFh	128KB	Block505	01F9h	0000h~00FFh	128KB
Block474	01DAh	0000h~00FFh	128KB	Block506	01FAh	0000h~00FFh	128KB
Block475	01DBh	0000h~00FFh	128KB	Block507	01FBh	0000h~00FFh	128KB
Block476	01DCh	0000h~00FFh	128KB	Block508	01FCh	0000h~00FFh	128KB
Block477	01DDh	0000h~00FFh	128KB	Block509	01FDh	0000h~00FFh	128KB
Block478	01DEh	0000h~00FFh	128KB	Block510	01FEh	0000h~00FFh	128KB
Block479	01DFh	0000h~00FFh	128KB	Block511	01FFh	0000h~00FFh	128KB

Detailed information of Address Map (word order)

• BootRAM(Main area)

-0000h~01FFh: 2(sector) x 512byte(NAND main area) = 1KB

0000h~00FFh(512B)	0100h~01FFh(512B)
BootM 0	BootM 1
(sector 0 of page 0)	(sector 1 of page 0)

• DataRAM(Main area)

-0200h~09FFh: 8(sector) x 512byte(NAND main area) = 4KB

0200h~02FFh(512B) DataM 0_0 (sector 0 of page 0)	0300h~03FFh(512B)	0400h~04FFh(512B)	0500h~05FFh(512B)
	DataM 0_1	DataM 0_2	DataM 0_3
	(sector 1 of page 0)	(sector 2 of page 0)	(sector 3 of page 0)
0600h~06FFh(512B) DataM 1_0 (sector 0 of page 1)	0700h~07FFh(512B) DataM 1_1 (sector 1 of page 1)	0800h~08FFh(512B) DataM 1_2 (sector 2 of page 1)	0900h~09FFh(512B) DataM 1_3 (sector 3 of page 1)

• BootRAM(Spare area)

-8000h~800Fh: 2(sector) x 16byte(NAND spare area) = 32B

8000h~8007h(16B)	8008h~800Fh(16B)
BootS 0	BootS 1
(sector 0 of page 0)	(sector 1 of page 0)

• DataRAM(Spare area)

-8010h~804Fh: 8(sector) x 16byte(NAND spare area) = 128B

8010h~8017h(16B)	8018h~801Fh(16B)	8020h~8027h(16B)	8028h~802Fh(16B)
DataS 0_0	DataS 0_1	DataS 0_2	DataS 0_3
(sector 0 of page 0)	(sector 1 of page 0)	(sector 2 of page 0)	(sector 3 of page 0)
8030h~8037h(16B)	8038h~803Fh(16B)	8040h~8047h(16B)	8048h~804Fh(16B)
DataS 1_0	DataS 1_1	DataS 1_2	DataS 1_3
(sector 0 of page 1)	(sector 1 of page 1)	(sector 2 of page 1)	(sector 3 of page 1)

^{*}NAND Flash array consists of 2KB page size and 128KB block size.

Spare area assignment

Equivalent to	1word of	NAND	Flash
---------------	----------	------	-------

			┡—																				
Buf.	Word Address	Byte Address	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0					
BootS 0	8000h	10000h								E	31												
	8001h	10002h						Ма	naged	by Int	ernal l	ECC Ic	gic										
	8002h	10004h		Res	serve	d for th	ne futu	re purp	ose			Ма	Managed by Internal ECC logic										
	8003h	10006h	Reserved for the current and future purpose																				
	8004h	10008h		ECC	Code	for M	lain ar	ea data	(2 nd)			ECC	Code	for M	ain are	ea data	a (1 st)						
	8005h	1000Ah		ECC Code for Spare area data (1 s) ECC Code for Main area data ((3 rd)							
	8006h	1000Ch		FFh(Reserved for the future purpose) ECC Code for Spare area data (2)													a (2 nd)						
	8007h	1000Eh		Free Usage																			
BootS 1	8008h	10010h			ВІ																		
	8009h	10012h			Managed by Internal ECC logic																		
	800Ah	10014h		Res	serve	d for th	ne futu	re purp	ose			Ма	naged	l by Int	ernal	ECC I	ogic						
	800Bh	10016h					Re	served	for the	curre	ent an	d futur	e purp	ose									
	800Ch	10018h		ECC	Code	for M	lain are	ea data	(2 nd)			ECC	Code	for M	ain are	ea data	a (1 st)						
	800Dh	1001Ah		ECC	Code	for Sp	oare ar	ea data	a (1 st)			ECC	Code	for Ma	Main area data (3 rd)								
	800Eh	1001Ch		FFh(R	eserv	ed for	the fu	ture pu	rpose)		ECC	Code	for Spa	are are	re area data (2 nd)							
	800Fh	1001Eh								Free I	Jsage												
DataS	8010h	10020h								E	BI .												
0_0	8011h	10022h						Ma	naged	by Int	ernal l	ECC Id	gic										
	8012h	10024h		Reserved for the future purpose									Managed by Internal ECC logic										
	8013h	10026h					Re	served	for the	curre	ent an	d futur	e purp	ose									
	8014h	10028h		ECC	Code	for M	lain ar	ea data	(2 nd)			ECC	Code	for M	ain are	ea data	a (1 st)						
	8015h	1002Ah		ECC	Code	for Sp	oare ar	ea data	a (1 st)			ECC	Code	for Ma	ain are	a data	(3 rd)						
	8016h	1002Ch		FFh(R	eserv	ed for	the fu	ture pu	rpose)		ECC	Code	for Spa	are are	ea data	a (2 nd)						
	8017h	1002Eh								Free I	Jsage												
DataS	8018h	10030h								E	31												
0_1	8019h	10032h						Ma	naged	by Int	ernal l	ECC Id	gic										
	801Ah	10034h		Reserved for the future purpose Ma									Managed by Internal ECC logic										
	801Bh	10036h					Re	served	for the	curre	ent and	d futur	e purp	ose									
	801Ch	10038h		ECC	Code	for M	lain ar	ea data	(2 nd)		ECC Code for Main area data (1st)												
	801Dh	1003Ah	ECC Code for Spare area data (1 sf)								ECC Code for Main area data (3 rd)												
	801Eh	1003Ch		FFh(R	eserv	ed for	the fu	ture pu	rpose)		ECC	Code	for Spa	are are	ea data	a (2 nd)						
	801Fh	1003Eh								Free	Jsage			_									

Equivalent to	1word of	NAND	Flash
---------------	----------	------	-------

			+					Equiva	alent to	IWOIU	OI INAIN	D I Ido										
Buf.	Word Address	Byte Address	F	Е	D	C	В	А	9	8	7	6	5	4	3	2	1	0				
DataS 0_2	8020h	10040h								В	31											
	8021h	10042h						Ма	naged	by Int	ernal l	ECC Id	ogic									
	8022h	10044h		Res	erve	d for	the fu	ture pur	oose			Mai	naged	by Int	ternal	ECC I	ogic					
	8023h	10046h					R	eserve	for the	e curre	ent an	d futuı	re pur	oose								
	8024h	10048h	ECC Code for Main area data (2 nd) ECC Code for Mai													ea data	a (1 st)					
	8025h	1004Ah		ECC Code for Spare area data (1 st) ECC Code for Main area													a (3 rd)					
	8026h	1004Ch		Res	erve	d for	the fu	ture pur	oose			ECC	Code	for Sp	are ar	ea dat	a (2 nd)					
	8027h	1004Eh								Free l	Jsage											
DataS 0_3	8028h	10050h								Е	31											
	8029h	10052h						Ма	naged	by Int	ernal l	ECC Id	ogic									
	802Ah	10054h		Res	erve	d for	the fu	ture pur	oose			Mai	naged	by Int	ternal	ECC I	ogic					
	802Bh	10056h					R	eserve	for the	e curre	ent an	d futur	re pur	oose								
	802Ch	10058h		ECC	Code	for	Main a	area dat	a (2 nd)			ECC	Code	for M	ain are	ea data	data (1 st)					
	802Dh	1005Ah		ECC	Code	for	Spare	area dat	a (1 st)			ECC	Code	for M	ain are	ea data	a (3 rd)					
ļ	802Eh	1005Ch		Res	erve	d for	the fu	ture pur	oose			ECC	Code	for Sp	are ar	ea dat	ata (2 nd)					
ļ	802Fh	1005Eh								Free l	Jsage											
DataS 1_0	8030h	10060h								В	31											
	8031h	10062h		Managed by Internal ECC logic																		
	8032h	10064h		Reserved for the future purpose Managed by Internal ECC log											ogic							
	8033h	10066h		Reserved for the current and future purpose																		
	8034h	10068h		ECC	Code	for	Main a	area dat	a (2 nd)			ECC	Code	for M	ain are	ea data	a (1 st)					
	8035h	1006Ah		ECC	Code	for	Spare	area dat	a (1 st)			ECC	Code for Main area data (3 rd)									
	8036h	1006Ch		Res	erve	d for	the fu	ture pur	oose			ECC	Code	for Sp	are ar	ea dat	a (2 nd))				
	8037h	1006Eh								Free l	Jsage											
DataS 1_1	8038h	10070h								Е	31											
	8039h	10072h						Ма	naged	by Int	ernal l	ECC Id	ogic									
	803Ah	10074h		Res	erve	d for	the fu	ture pur	oose		Managed by Internal ECC logic											
	803Bh	10076h					R	eserve	for the	e curre	ent an	d futur	re pur	oose								
	803Ch	10078h		ECC	Code	for	Main a	area dat	a (2 nd)			ECC	Code	for M	ain are	ea data	a (1 st)					
	803Dh	1007Ah		ECC	Code	for	Spare	area dat	a (1 st)			ECC	Code	for M	ain are	ea data	a (3 rd)					
	803Eh	1007Ch		Res	erve	d for	the fu	ture pur	oose			ECC	Code	for Sp	are ar	ea dat	a (2 nd))				
	803Fh	1007Eh								Free l	Jsage											
DataS 1_2	8040h	10080h								В	31											
	8041h	10082h						Ма	naged	by Int	ernal l	ECC Id	ogic									
	8042h	10084h		Reserved for the future purpose										by Int	ternal	ECC I	ogic					
	8043h	10086h					R	eserve	for the	e curre	ent an	d futuı	re pur	oose								
	8044h	10088h		ECC	Code	for	Main a	area dat	a (2 nd)		ECC Code for Main area data (1st)											
İ															data (3 rd)							
ì	8045h	1008Ah		ECC Code for Spare area data (1 st) Reserved for the future purpose ECC Code for Main area data (2 st) ECC Code for Spare area data (2 st)											a (3 rd)							
	8045h 8046h	1008Ah 1008Ch					-)				

			.															
Buf.	Word Address	Byte Address	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
DataS 1_3	8048h	10090h		ВІ														
	8049h	10092h		Managed by Internal ECC logic														
	804Ah	10094h		Reserved for the future purpose Managed by Internal ECC logic														
	804Bh	10096h					Res	erved	for the	e curre	ent and	d future	e purp	ose				
	804Ch	10098h		ECC	Code	for Ma	ain are	a data	(2 nd)			ECC	Code	for Ma	ain are	a data	(1 st)	
	804Dh	1009Ah		ECC	Code	for Spa	are are	ea data	a (1 st)			ECC	Code	for Ma	ain are	a data	(3 rd)	
	804Eh	1009Ch		Reserved for the future purpose ECC Code for Spare area data (2 nd)														
	804Fh	1009Eh								Free	Usage							

NOTE:

⁻ BI: Bad block Information

>Host can use complete spare area except BI and ECC code area. For example,

Host can write data to Spare area buffer except for the area controlled by ECC logic at program operation.

>OneNAND automatically generates ECC code for both main and spare data of memory during program operation in case of ' with ECC' mode , but does not update ECC code to spare bufferRAM.

>When reading/programming spare area, spare area BufferRAM address(BSA) and BufferRAM sector count(BSC) is chosen via Start buffer register as it is

7. Detailed address map for registers

Address (word order)	Address (byte order)	Name	Host Access	Description				
F000h	1E000h	Manufacturer ID	R	Manufacturer identification				
F001h	1E002h	Device ID	R	Device identification				
F002h	1E004h	Version ID	R	Version identification				
F003h	1E006h	Data Buffer size	R	Data buffer size				
F004h	1E008h	Boot Buffer size	R	Boot buffer size				
F005h	1E00Ah	Amount of buffers	R	Amount of data/boot buffers				
F006h	1E00Ch	Technology	R	Info about technology used for OneNAND				
F007h~F0FFh	1E00Eh~1E1FEh	Reserved	-	Reserved for user				
F100h	1E200h	Start address 1	R/W	Chip address for selection of NAND Core in DDP & Block address				
F101h	1E202h	Start address 2	R/W	Chip address for selection of BufferRAM in DDP				
F102h	1E204h	Start address 3	R/W	Destination Block address for Copy back program				
F103h	1E206h	Start address 4	R/W	Destination Page & Sector address for Copy back program				
F104h	1E208h	Start address 5	-	N/A				
F105h	1E20Ah	Start address 6	-	N/A				
F106h	1E20Ch	Start address 7	-	N/A				
F107h	1E20Eh	Start address 8	R/W	NAND Flash Page & Sector address				
F108h~F1FFh	1E210h~1E3FEh	Reserved	-	Reserved for user				
F200h	1E400h	Start Buffer	R/W	Buffer Number for the page data transfer to/from the OneNAND and the start Buffer Address The meaning is with which buffer to start and how man buffers to use for the data transfer				
F201h~F207h	1E402h~1E40Eh	Reserved	-	Reserved for user				
F208h~F21Fh	1E410h~1E43Eh	Reserved	-	Reserved for vendor specific purposes				
F220h	1E440h	Command	R/W	Host control and OneNAND operation commands				
F221h	1E442h	System Configuration 1	R, R/W	OneNAND and Host Interface Configuration				
F222h	1E444h	System Configuration 2	-	N/A				
F223h~F22Fh	1E446h~1E45Eh	Reserved	-	Reserved for user				
F230h~F23Fh	1E460h~1E47Eh	Reserved	-	Reserved for vendor specific purposes				
F240h	1E480h	Controller Status	R	· ·				
F241h	1E482h	Interrupt	R/W	OneNAND Command Completion Interrupt Status				
F242h~F24Bh	1E484h~1E496h	Reserved	-	Reserved for user				
F24Ch	1E498h	Start Block Address	R/W	Start OneNAND block address to unlock in Write Protection mode				
F24Dh	1E49Ah	End Block Address	R/W	End OneNAND block address to unlock in Write Protection mode				
F24Eh	1E49Ch	Write Protection Status	R	Current OneNAND Write Protection status (unlocked/locked/tight-locked)				
F24Fh~FEFFh	1E49Eh~1FDFEh	Reserved	-	Reserved for user				

Address (word order)	Address (byte order)	Name	Host Access	Description
FF00h	1FE00h	ECC Status Register	R	ECC status of sector
FF01h	1FE02h	ECC Result of main area data	R	ECC error position of Main area data error for first selected Sector
FF02h	1FE04h	ECC Result of spare area data	R	ECC error position of Spare area data error for first selected Sector
FF03h	1FE06h	ECC Result of main area data	R	ECC error position of Main area data error for second selected Sector
FF04h	1FE08h	ECC Result of spare area data	R	ECC error position of Spare area data error for second selected Sector
FF05h	1FE0Ah	ECC Result of main area data	R	ECC error position of Main area data error for third selected Sector
FF06h	1FE0Ch	ECC Result of spare area data	R	ECC error position of Spare area data error for third selected Sector
FF07h	1FE0Eh	ECC Result of main area data	R	ECC error position of Main area data error for fourth selected Sector
FF08h	1FE10h	ECC Result of spare area data	R	ECC error position of Spare area data error for fourth selected Sector
FF09h~FFFFh	1FE12h~1FFFEh	Reserved	-	Reserved for vendor specific purposes

7.1 Manufacturer ID Register (R): F000h, default=0001h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Man	ufID							

ManufID (Manufacturer ID): manufacturer identification, 00ECh for Samsung Electronics Corp. (0001h for ES)

7.2 Device ID Register (R): F001h, default=refer to Table 1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Devi	ceID							

DeviceID (Device ID): Device Identification,

Table 1.

Device	DeviceID[15:0]
KFG1216Q2M	0024h
KFG1216D2M	0025h
KFG1216U2M	0025h
KFH1G16Q2M	003Ch
KFH1G16D2M	003Dh
KFH1G16U2M	003Dh

7.3 Version ID Register (R): F002h

: N/A

7.4 Data Buffer size Register(R): F003h, default=0800h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DataB	ufSize							

DataBufSize total data buffer size in words in the memory interface used for shrinks Equals two buffers of 1024 words each(2x1024=2\text{\text{N}}, N=11)

7.5 Boot Buffer size Register (R): F004h, default=0200h

I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I								BootB	ufSize							

BootBufSize total boot buffer size in words in the memory interface (512 words=29, N=9)

7.6 Amount of Buffers Register (R): F005h, default=0201h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DataBuf	Amount							BootBut	fAmount			

DataBufAmount: the amount of data buffer=2(2^N, N=1)
BootBufAmount: the amount of boot buffer=1(2^N, N=0)

7.7 Technology Register (R): F006h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Te	ch							

Tech: technology information, what technology is used for the memory

Tech	Technology
0000h	NAND SLC
0001h	NAND MLC
0002h	NOR SLC
0003h	NOR MLC
0004h-FFFFh	Reserved

7.8 Start Address1 Register (R/W): F100h, default=0000h

I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DFS		R	eserved	(000000))						FBA				

DFS (Device Flash Core Select): it selects Flash Core in two Flash Core of DDP

FBA (NAND Flash Block Address): NAND Flash block address which will be loaded or programmed or erased.

Device	Number of Block	FBA
1Gb DDP	1024	DFS[15] & FBA[8:0]
512Mb	512	FBA[8:0]

7.9 Start Address2 Register (R/W): F101h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DBS		Reserved(0000000000000)													

DBS (Device BufferRAM Select): it selects BufferRAM in two BufferRAM of DDP

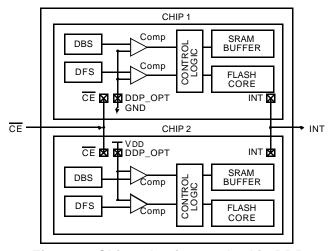


Figure 4. Chip selection method in DDP

7.10 Start Address3 Register (R/W): F102h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reser	ved(000	0000)							FCBA				

FCBA (NAND Flash Copy Back Block Address): NAND Flash destination block address which will be copy back programmed.

7.11 Start Address4 Register (R/W): F103h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved(00000000)									FC				FC	SA

FCPA (NAND Flash Copy Back Page Address): NAND Flash destination page address in a block for copy back program operation.

FCPA(default value) = 000000

FCPA range: 000000~111111, 6bits for 64 pages

FCSA (NAND Flash Copy Back Sector Address): NAND Flash destination sector address in a page for copy back program operation.

FCSA(default value) = 00

FCSA range: 00~11, 2bits for 4 sectors

7.12 Start Address5 Register: F104h

: N/A

7.13 Start Address6 Register: F105h

: N/A

7.14 Start Address7 Register: F106h

: N/A

7.15 Start Address8 Register (R/W): F107h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Re	served ((000000)	00)					FF	- A			FS	SA

FPA (NAND Flash Page Address): NAND Flash start page address in a block for page load or copy back program or program operation.

FPA(default value)=000000

FPA range: 000000~111111 , 6bits for 64 pages

FSA (Flash Sector Address): NAND Flash start sector address in a page for read or copy back program or program operation.

FSA(default value) = 00

FSA range: 00~11, 2bits for 4 sectors

7.16 Start Buffer Register (R/W): F200h, default=0000h

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserve	d(0000)			BS	SA.			F	Reserved	(000000))		BS	SC OS

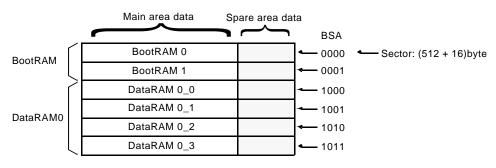
BSC (BufferRAM Sector Count): this field specifies the number of sectors to be read or programmed or copy back programmed. Its maximum count is 4 sectors at 00(default value)value. For a single sector access, it should be programmed as value 01.

However internal RAM buffer reached to 11vaule(max value), it count up to 00 value to satisfy BSC value.

For example1) If BSA=1010, BSC=11, then selected BufferRAM are '1010 ->1011 ->1000'

There is restriction in BootRAM case.

For example 2) If BSA=0000, BSC should be 01 or 10.


If BSA=0001, BSC should be 01.

BSA (BufferRAM Sector Address): It is the place where data is placed and specifies the sector 0~3 in the internal BootRAM and DataRAM

BSA[3] is the selection bit between BootRAM and DataRAM

BSA[2] is the selection bit between DataRAM0 and DataRAM1

While one of BootRAM or DataRAM0 interfaces with memory, the other RAM is inaccessible.

		_
[DataRAM 1_0	← 1100
DataRAM1	DataRAM 1_1	← 1101
DalaKAWII	DataRAM 1_2	1110
Į	DataRAM 1_3	1111

	-
BSC	Number of Sectors
01	1 sector
10	2 sector
11	3 sector
00	4 sector

7.17 Command Register (R/W): F220h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								mand							

Command: operation of the memory interface

7.18 System Configuration 1 Register (R, R/W): F221h, default=40C0h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R/W		R/W			R/W		R/W	R/W	R/W	R/W		F	₹		R
RM		BRL			BL		ECC	RDY pol	INT pol	IOB E		Reserve	ed(0000)		BW PS

 $\textbf{RM} \ (\text{Read Mode}) : \text{this field specifies the selection between asynchronous read mode and synchronous read mode}$

RM	Read Mode
0	Asynchronous read(default)
1	Synchronous read

BRL (Burst Read Latency): this field specifies the initial access latency in the burst read transfer.

BRL	Latency Cycles
000	8(N/A)
001	9(N/A)
010	10(N/A)
011	3(N/A)
100	4(default, min.)
101	5
110	6
111	7

BL (Burst Length): this field specifies the size of burst length during Sync. burst read. Wrap around and linear burst.

BL	Burst Length(Main)	Burst Length(Spare)						
000	Continuou	s(default)						
001	4 wc	4 words						
010	8 wc	8 words						
011	16 w	ords						
100	32 words	32 words N/A						
101~111	Rese	Reserved						

ECC: Error Correction Operation, 0=with correction(default), 1=without correction(by-passed)

RDYpol: RDY signal polarity

0=low for ready, 1=high for ready((default)

INTpol: INT signal polarity 0=low for Interrupt pending , 1=high for Interrupt pending (default)

INTpol	INT bit of Interrupt Status Register	INT Pin output
0	0	1
1	0	0

IOBE I/O buffer enable for INT and RDY signals, INT and RDY outputs are HighZ at power-up, bit 7 and 6 become valid after IOBE is set to 1.

IOBE can be reset only by Cold reset or by writing 0 to bit 5 of System Configuration 1 register.

0=disable(default), 1=enable

BWPS: boot buffer write protect status, 0=locked(default)

7.19 System Configuration 2 Register: F222h

: N/A

7.22 Controller Status Register (R): F240h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
СВ	FC	RB	WB	EB	WRc	Reserv ed(0)	Reserv ed(0)	RSTB		R	deserved	1(000000	0)		TO (0)

 $\textbf{CB}(\mbox{Controller Busy})$: this bit shows the overall internal status of $\mbox{OneNAND}$ 0=ready, 1=busy

FC (Fault Check): this bit shows whether host loads data from NAND Flash array into locked BootRAM or programs/erases locked block of NAND Flash array or put invalid command into the device.

FC	Fault Check Result
0	No fault
1	Fault

WRc (Current Sector/Page Write Result): this bit shows current sector/page Program/Copy Back Program/Erase result of flash memory.

WRc	Current Sector/Page Program/CopyBack. Program/Erase Result
0	Pass
1	Fail

TO (Time Out): time out for load/program/copy back program/erase 0=no time out(fixed)

RB(Read Busy): this bit shows the Load operation status 0=ready(default), 1=busy

 $\textbf{WB}(\mbox{Write Busy})$: this bit shows the Program operation status 0=ready(default), 1=busy

EB(Erase Busy) : this bit shows the Erase operation status 0=ready(default), 1=busy

 $\begin{tabular}{ll} \textbf{RSTB}(Reset \ Busy): this bit shows the \ Reset operation \ status \\ 0=ready(default), \ 1=busy \end{tabular}$

table 2. Controller Status Register output for modes.

Marila					Control	ler Statu	ıs Register [1	5:0]			
Mode	СВ	FC	RB	WB	EB	WRc	Reserved(0)	PRp	RSTB	Reserved(0)	то
Load Ongoing	1	0	1	0	0	0	0	0	0	000000	0
Program Ongoing	1	0	0	1	0	0	0	0	0	000000	0
Erase Ongoing	1	0	0	0	1	0	0	0	0	000000	0
Reset Ongoing	1	0	0	0	0	0	0	0	1	000000	0
Load OK	0	0	0	0	0	0	0	0	0	000000	0
Program OK	0	0	0	0	0	0	0	0	0	000000	0
Erase OK	0	0	0	0	0	0	0	0	0	000000	0
Load Fail 1)	0	0	0	0	0	0	0	0	0	000000	0
Program Fail	0	0	0	0	0	1	0	0	0	000000	0
Erase Fail	0	0	0	0	0	1	0	0	0	000000	0
Load Reset ²⁾	0	0	0	0	0	0	0	0	0	000000	0
Program Reset	0	0	0	0	0	0	0	0	0	000000	0
Erase Reset	0	0	0	0	0	0	0	0	0	000000	0
Program Lock	0	1	0	0	0	0	0	0	0	000000	0
Erase Lock	0	1	0	0	0	0	0	0	0	000000	0
Load Lock(Buffer Lock)	0	1	0	0	0	0	0	0	0	000000	0
OTP Program Fail(Lock)	0	1	0	0	0	0	0	0	0	000000	0
OTP Program Fail	0	0	0	0	0	1	0	0	0	000000	0
Invalid Command	0	1	0	0	0	0	0	0	0	000000	0

NOTE: 1. ERm and/or ERs bits in ECC status register at Load Fail case is 10. (2bits error - uncorrectable)

^{2.} ERm and ERs bits in ECC status registe at Load Reset case are 00. (No error)

FLASH MEMORY

7.23 Interrupt Status Register (R/W): F241h, default=8080h(after Cold reset),8010h(after Warm/Hot reset)

Ī	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	INT			Reser	ved(000	0000)			RI	WI	EI	RSTI		Reserve	ed(0000)	

Bit	Bit Name	Defa	ult State	Valid	Function
Address		Cold	Warm/Hot	States	
15	INT(interrupt): the master interrupt bit	1	1	0	Interrupt Off
	- Set to '1' of itself when one or more of RI, WI, RSTI is set to '1', or boot is done, or warm reset is releasedCleared to '0' when by writing '0' to this bit or by reset(Cold/Warm/Hot reset). '0' in this bit means that INT pin is low status. (This INT bit is directly wired to the INT pin on the chip. INT pin goes low upon writing '0' to this bit when INTpol is high and goes high upon writing '0' to this bit when INTpol is low.)			0->1	Interrupt Pending
7	RI(Read Interrupt):	1	0	0	Interrupt Off
	-Set to '1' of itself at the completion of Read Operation -Cleared to '0' when by writing '0' to this bit or by reset (Cold/Warm/Hot reset).			0->1	Interrupt Pending
6	WI(Write Interrupt):	0	0	0	Interrupt Off
	-Set to '1' of itself at the completion of Program Operation -Cleared to '0' when by writing '0' to this bit or by reset (Cold/Warm/Hot reset).			0->1	Interrupt Pending
5	EI(Erase Interrupt):	0	0	0	Interrupt Off
	-Set to '1' of itself at the completion of Erase Operation -Cleared to '0' when by writing '0' to this bit or by reset (Cold/Warm/Hot reset).	_		0->1	Interrupt Pending
4	RSTI(Reset Interrupt):	0	1	0	Interrupt Off
	-Set to '1' of itself at the completion of Reset Operation -Cleared to '0' when by writing '0' to this bit.			0->1	Interrupt Pending

7.24 Start Block Address (R/W): F24Ch, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reser	ved(000	0000)							SBA				

SBA (Start Block Address): Start NAND Flash block address to unlock in Write Protection mode, which preceeds 'Unlock block command'.

7.25 End Block Address (R/W): F24Dh, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reser	ved(000	0000)							EBA				

EBA (End Block Address): End NAND Flash block address to unlock in Write Protection mode, which preceeds 'Unlock block command'. EBAshould be equal to or larger than SBA.

Device	Number of Block	SBA/EBA
512Mb	512	[8:0]

FLASH MEMORY

7.26 NAND Flash Write Protection Status (R): F24Eh, default=0002h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				R	eserved	(000000	0000000	0)					US	LS	LTS

US (Unlocked Status): '1' value of this bit specifies that there is unlocked block in NAND Flash.

LS (Locked Status): '1' value of this bit specifies that there is locked block in NAND Flash.

LTS (Lock-tighten Status): '1' value of this bit specifies that 'Locked block(s)' is lock-tighten.

7.27 ECC Status Register(R): FF00h, default=0000h

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	ERm3		ERs3		ER	m2	ER	s2	ER	m1	ER	Rs1	ER	m0	ER	s0

ERm (ECC Error for Main area data) & ERs (ECC Error for Spare area data)

ERm0/1/2/3 is for first/second/third/fourth selected sector main of BufferRAM, ERs0/1/2/3 is for first/second/third/fourth selected sector spare of BufferRAM. ERm and ERs show the number of error in a sector as a result of ECC check at the load operation.

ERm and ERs bits are updated in boot loading operation, too.

ERm, ERs	ECC Status
00	No Error
01	1-bit error(correctable)
10	2 bits error (uncorrectable) ¹⁾
11	Reserved

NOTE

7.28 ECC Result of first selected Sector Main area data Register (R): FF01h, default=0000h

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Г		Reserve	d(0000)					ECCpo:	sWord0				ECCposIO0				

7.29 ECC Result of first selected Sector Spare area data Register (R): FF02h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved(0	000000	000)				EC	ClogSector0		ECCp	osIO0	

7.30 ECC Result of second selected Sector Main area data Register (R): FF03h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Reserve	ed(0000)					ECCpo	sWord1				ECCposIO1					

7.31 ECC Result of second selected Sector Spare area data Register (R): FF04h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved(0	000000	000)				EC	ClogSector1		ECCp	osIO1	

7.32 ECC Result of third selected Sector Main area data Register (R): FF05h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	d(0000)					ECCpo:	sWord2					ECCp	osIO2	

^{1. 3}bits or more error detection is not supported.

FLASH MEMORY

7.33 ECC Result of third selected Sector Spare area data Register (R): FF06h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved(0	000000	000)				EC	ClogSector2		ECCp	osIO2	

7.34 ECC Result of fourth selected Sector Main area data Register (R): FF07h, default=0000h

I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserve	d(0000)					ECCpo:	sWord3					ECCp	osIO3	

7.35 ECC Result of fourth selected Sector Spare area data Register (R): FF08h, default=0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved(0	000000	000)				EC	ClogSector3		ECCp	osIO3	

NOTE:

- 1. ECCposWord: ECC error position address that selects one of Main area data(256words)
- 2. ECCposIO: ECC error position address which selects one of sixteen DQs (DQ 0~DQ 15).
- 3. ECClogSector: ECC error position address that selects one of the 2nd and 3rd word of spare area.

8 Device Operation

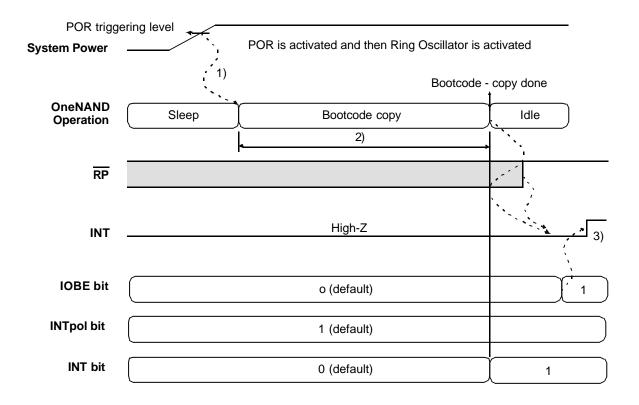
The device supports both a limited command based and a register based interface for performing operations on the device, reading device ID, writing data to buffer etc. The command based interface is active in the boot partition, i.e. commands can only be written with a boot area address. Boot area data is only returned if no command has been issued prior to the read. When reading and programming the device, the data handling is data unit based, i.e. one data is read at the time from NAND Flash array. The device has inputs/outputs that accept both address and data information.

8.1 Command based operation

The entire address range, except for the boot area, can be used for the data buffer. All commands are written to the boot partition. Writes outside the boot partition are treated as normal writes to the buffers or registers. The command consists of one or more cycles depending on the command. After completion of the command the device starts its execution. Writing incorrect information which include address and data or writing an improper command will terminate the previous command sequence and make the device go to the ready status.

Device Bus Operations

Operation	CE	OE	WE	ADD0~15	DQ0~15	RP	CLK	AVD
Standby	Н	Х	Х	Х	High-Z	Н	X	Х
Warm Reset	Х	Х	Х	Х	High-Z	L	Х	Х
Asynchronous Write	L	Н	L	Add. In	Data In	н	L	5
Asynchronous Read	L	L	н	Add. In	Data Out	н	L	4
Load Initial Burst Address	L	Н	Н	Add. In	Х	Н	4	5
Burst Read	L	L	н	x	Burst Data Out	Н		Х
Terminate Burst Read Cycle	Н	Х	Н	Х	High-Z	Н	Х	Х
Terminate Burst Read Cycle via RP	Х	Х	Х	Х	High-Z	L	Х	Х
Terminate Current Burst Read Cycle and Start New Burst Read Cycle	L	Н	н	Add In	High-Z	Н		7


Note: L=VIL(Low), H=VIH (High), X=Don't Care.

Reset Mode

Cold Reset

At system power-up, the voltage detector in the device detects the rising edge of Vcc and releases internal power-up reset signal which triggers bootcode loading. Bootcode loading means that the boot loader in the device copies designated sized data(1KB) from the beginning of memory to the BootRAM.

Note: 1) Bootcode copy operation starts 400us later than POR activation.

The system power should reach Vcc after POR triggering level(typ. 1.5V) within 400us for valid boot code data.

Figure 5. Cold Reset Timings

^{2) 1}K bytes Bootcode copy takes 70us(estimated) from sector0 and sector1/page0/block0 of NAND Flash array to BootRAM. Host can read Bootcode in BootRAM(1K bytes) after Bootcode copy completion.

³⁾ INT register goes 'Low' to 'High' on the condition of 'Bootcode-copy done' and RP rising edge.

If RP goes 'Low' to 'High' before 'Bootcode-copy done', INT register goes to 'Low' to 'High' as soon as 'Bootcode-copy done'

Warm Reset

Warm reset means that the host resets the device by \overline{RP} pin, and then the device logic stops all current operation and executes internal reset operation (Note 1) synchronized with the falling edge of \overline{RP} and resets current NAND Flash core operation synchronized with the rising edge of \overline{RP} . The device logic will not be reset in case \overline{RP} pulses shorter than 200ns, but the device guarantees the logic reset operation in case \overline{RP} pulse is longer than 200ns. NAND Flash core reset will abort current NAND Flash Core operation. The contents of memory cells being altered are no longer valid as the data will be partially programmed or erased. Warm reset has no effect for contents of main and spare area buffers.

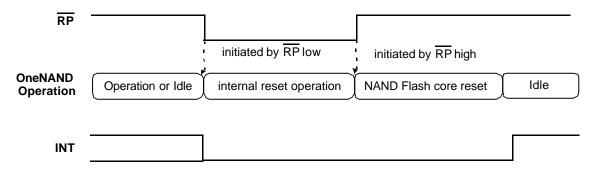


Figure 6. Warm Reset Timings

Hot Reset

Hot reset means that the host resets the device by reset command(Note 2), and then the device logic stops all current operation and executes internal reset operation(Note 1), and resets current NAND Flash core operation. Hot reset has no effect for contents of main and spare area buffers.

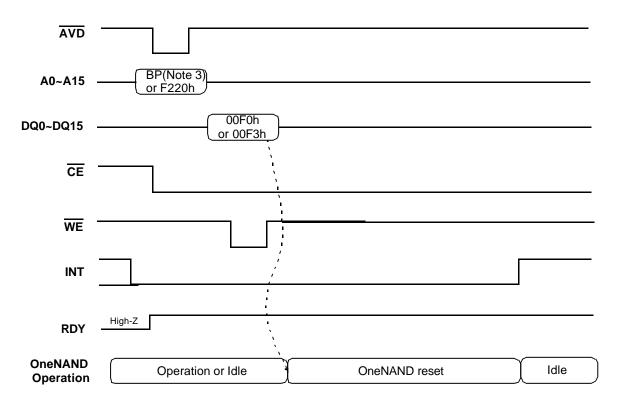


Figure 7. Hot Reset Timings

- 1. Internal reset operation means that the device initializes internal registers and makes output signals go to default status and bufferRAM data are kept unchanged after Warm/Hot reset operations.
- 2. Reset command: Command based reset or Register based reset
- 3. BP(Boot Partition): BootRAM area[0000h~01FFh, 8000h~800Fh]

NAND Flash Core Reset

Host can reset NAND Flash Core operation by NAND Flash Core reset command.

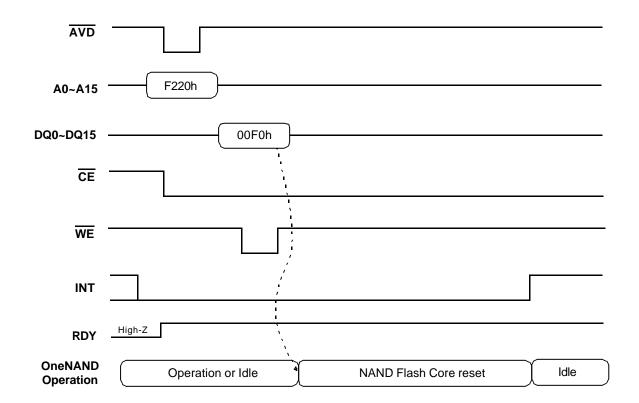


Figure 8. NAND Flash Core Reset Timings

Table 3. Internal Register reset

	Internal Registers	Default	Cold Reset	War <u>n R</u> eset (RP)	Hot Reset (00F3h)	Hot Reset (BP-F0)	NAND Flash Reset(00F0h)		
F000h	Manufacturer ID Register (R)	00ECh	N/A	N/A	N/	/A	N/A		
F001h	Device ID Register (R): 512M OneNAND 1.8V	0024h	N/A	N/A	N/	N/A N/A			
F002h	Version ID Register (rR): 54MHz	001Eh	N/A	N/A	N/	/A	N/A		
F003h	Data Buffer size Register (R)	0800h	N/A	N/A	N/	/A	N/A		
F004h	Boot Buffer size Register (R)	0200h	N/A	N/A	N/	/A	N/A		
F005h	Amount of Buffers Register (R)	0201h	N/A	N/A	N/	/A	N/A		
F006h	Technology Register (R)	0000h	N/A	N/A	N/	/A	N/A		
F100h	Start Address1 Register (R/W): DFS, FBA	0000h	0000h	0000h	000)0h	N/A		
F101h	Start Address2 Register (R/W): DBS	0000h	0000h	0000h	000)0h	N/A		
F102h	Start Address3 Register (R/W): FCBA	0000h	0000h	0000h	000	00h	N/A		
F103h	Start Address4 Register (R/W): FCPA, FCSA	0000h	0000h	0000h	000)0h	N/A		
F107h	Start Address5 Register (R/W): FPA, FSA	0000h	0000h	0000h	0000h		0000h		N/A
F200h	Start Buffer Register (R/W): BSA, BSC	0000h	0000h	0000h	000)0h	N/A		
F220h	Command Register (R/W)	0000h	0000h	0000h	000	00h	N/A		
F221h	System Configuration 1 Register (R/W)	40C0h	40C0h	O (Note1)	O (N	ote1)	N/A		
F240h	Controller Status Register (R)	0000h	0000h	0000h	000)0h	N/A		
F241h	Interrupt Status Register (R/W)	-	8080h	8010h	801	I0h	N/A		
F24Ch	Start Block Address (R/W)	0000h	0000h	0000h	N/	/A	N/A		
F24Dh	End Block Address (R/W)	0000h	0000h	0000h	N/	/A	N/A		
F24Eh	NAND Flash Write Protection Status (R)	0002h	0002h	0002h	N/	/A	N/A		
FF00h	ECC Status Register (R) (Note2)	0000h	0000h	0000h	000	00h	N/A		
FF01h	ECC Result of Sector 0 Main area data Register(R)	0000h	0000h	0000h	000)0h	N/A		
FF02h	ECC Result of Sector 0 Spare area data Register (R)	0000h	0000h	0000h	000)0h	N/A		
FF03h	ECC Result of Sector 1 Main area data Register(R)	0000h	0000h	0000h	000	00h	N/A		
FF04h	ECC Result of Sector 1 Spare area data Register (R)	0000h	0000h	0000h	000	00h	N/A		
FF05h	ECC Result of Sector 2 Main area data Register(R)	0000h	0000h	0000h 0000h		N/A			
FF06h	ECC Result of Sector 2 Spare area data Register (R)	0000h	0000h	0000h	000	00h	N/A		
FF07h	ECC Result of Sector 3 Main area data Register(R)	0000h	0000h	0000h	000	00h	N/A		
FF08h	ECC Result of Sector 3 Spare area data Register (R)	0000h	0000h	0000h	000	00h	N/A		

NOTE: 1) RDYpol, INTpol, IOBE is reset by Cold reset. BWPS is reset by Cold/warm reset. The other bits are reset by Cold/Warm/Hot reset. 2) ECC Status Register & ECC Result Registers are reset when any command is issued.

Write Protection

Write Protection for BootRAM

At system power-up, the voltage detector in the device detects the rising edge of Vcc and releases the internal power-up reset signal which triggers bootcode loading. And the designated size data(1KB) is copied from the beginning of the memory to the BootRAM. After the bootcode loading is completed, the BootRAM is always locked to protect the significant boot code from the accidental write.

Write Protection for NAND Flash array Write Protection Modes

The device offers both hardware and software write protection features for NAND Flash array. The software write protection feature is used by writing Lock command or Lock-tight command to command register. And the hardware write protection feature is used by executing cold or warm reset. The default state is locked, and all NAND Flash array goes to locked state after cold or warm reset.

Write Protection Commands

The instant secured block protects code and data by allowing blocks to be locked or lock-tighten. The write protection scheme offers two levels of protection. The first allows software-only control of write protection(useful for frequently changed data blocks), while the second requires hardware interaction before locking can be changed(protects infrequently changed code blocks).

The followings summarize the locking functionality

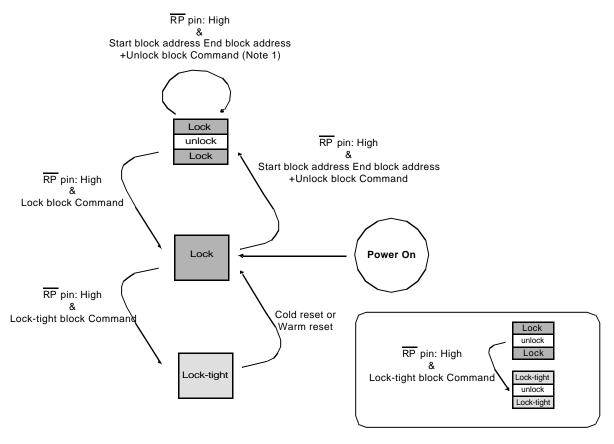
- > All blocks power-up in a locked state. Unlock commands can unlock these blocks.
- >The lock-tight command makes locked block(s) lock-tighten block(s). And lock-tight state can be returned to lock state only when cold or warm reset is asserted.
- > Lock-tighten blocks offer the user an additional level of write protection beyond that of a regular locked block. Lock-tighten block can't have it's state changed by software, it can be changed by warm reset or cold reset.
- > Unlock start and end block address are reflected immediately to the device only when the unlock command is issued, and NAND Flash write protection status register is also updated at that time.
- > Unlocked blocks can be programmed or erased.
- > Only one consecutive area can be released to unlock state from lock state, i.e unlocking multi area is not available.
- > Partial block lock (a range) is not available, i.e lock operation is only available for all blocks.

Write Protection Status

The device current Write Protection status can be read in NAND Flash Write Protection Status Register(F24Eh). There are three bits - US, LS, LTS -, which are not cleared by hot reset. These Write Protection status registers are updated when Write Protection command is entered.

The followings summarize locking status.

example1)


In default, [2:0] values are 010.

- -> If host executes unlock block operation, then [2:0] values turn to 110.
- -> If host executes lock-tight block operation, then [2:0] values turn to 101.

If host executes lock block operation, then [2:0] values turn to 010.

- -> If host executes lock-tight block operation, then [2:0] values turn to 001.
- -> If cold or warm reset is entered, then [2:0] values turn to 010.

NOTE:

1. Unlock range(from Start block address to End block address) can be modified by unlock command sequence(Start block address+End block address).

Figure 9. State diagram of NAND Flash Write Protection

Locked > Command Sequence : Lock block command > All blocks default to locked after Cold reset or Warm reset > Partial block lock (a range) is not available; Lock block operation is only available for all blocks > Unlocked blocks can be locked by using the Lock block command and a lock block's status can be changed to unlock or lock-tight using the appropriate software commands Unlocked > Command Sequence: Start block address+End block address+Unlock block command > Unlocked block can be programmed or erased > An unlocked block' s status can be changed to the locked or lock-tighten state using the appropriate software command > Only one sequential area can be released to unlock state from lock state; Unlocking multi area is not available > This unlocked area can be changed with new Unlock command; when new Unlock command is issue, last unlocked area is locked and new area is unlocked Lock-tighten > Command Sequence : Lock-tight block command > Lock-tighten blocks offer the user an additional level of write protection beyond that of a regular lock block. A block that is lock-tighten cannot have it's state change by software, only by Cold or Warm reset. > Only locked blocks can be lock-tighten by Lock-tight command. > Lock-tighten blocks revert to the locked state at Cold or Warm > Lock-tighten area does not change with any command;

Figure 10. Operations of NAND Flash Write Protection

when new unlock command is issued including the lock-tighten

area, new unlocked command is ignored.

Load Operation

The load operation is initiated by setting up the start address from which the data is to be loaded. The load command is issued in order to initiate the load. The device transfers the data from NAND Flash array into the BufferRAM. The ECC is checked and any detected and corrected error is reported in the status response as well as any unrecoverable error. When the BufferRAM has been filled an interrupt is issued to the host in order to read the contents of the BufferRAM. The read from the BufferRAM consist of asynchronous read mode or synchronous read mode. The status information related to the BufferRAM fill operation can be checked by the host if required.

The device provides dual data buffer memory architecture. The device is capable of data-read operation from one data buffer and data-load operation to the other data buffer simultaneously. Refer to the information for more details in "Read while Load operation".

Copy-back Program Operation

The copy-back program is configured to quickly and efficiently rewrite data stored in one page by sector unit(1/2/3/4 sector) without utilizing an external memory. Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also need to be copied to the newly assigned free block. The operation for performing a copy-back program is a sequential execution of page-read without serial access and copying-program with the address of destination page.

Erase Operation

The device can be erased in block unit. To erase a block is to write 1's into the desired memory block by executing the Internal Erase Routine. In order to perform the Internal Erase Routine, command sequence is necessary. First, host sets the block address of the memory location. Second, erase command initiates the internal erase routine. During the execution of the Routine, the host is not required to provide further controls or timings. During the Internal erase routine, commands except reset command written to the device will be ignored.

Note that a reset during a erase operation will cause data corruption at the corresponding location.

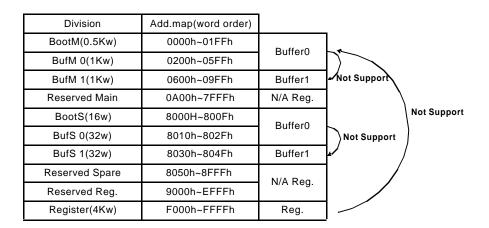
Read Operation

The device has two read configurations; Asynchronous read and Synchronous burst read.

The initial state machine makes the device to be automatically entered into asynchronous read mode to prevent the memory content from spurious altering upon device power up or after a hardware reset. No commands are required to retrieve data in asynchronous mode. The synchronous mode will be enabled by setting RM bit of System configuration1 register to Synchronous read mode.

Asynchronous Read Mode (RM = 0)

For the asynchronous read mode a valid address should be asserted on ADD0-ADD15, while driving $\overline{\text{AVD}}$ and $\overline{\text{CE}}$ to VIL $\overline{\text{WE}}$ should remain at VIH . The data will appear on ADD15-ADD0. Address access time (tAA) is equal to the delay from valid addresses to valid output data. The chip enable access time(tCE) is the delay from the falling edge of $\overline{\text{CE}}$ to valid data at the outputs. The output enable access time(tOE) is the delay from the falling edge of $\overline{\text{OE}}$ to valid data at the output.


Synchronous (Burst) Read Mode (RM = 1)

The device is capable of continuous linear burst operation and linear burst operation of a preset length. For the burst mode, the host should determine how many clock cycles are desired for the initial word(tlAA) of each burst access using BRL bit of System configuration 1 register. The registers also can be read during burst read mode by using \overline{AVD} signal with a address. To initiate the synchronous read again, a new address during \overline{CE} low toggle is needed after the host has completed status reads or the device has completed the program or erase operation.

Continuous Linear Burst Read

The initial word is output that after the rising edge of the first CLK cycle. Subsequent words are output that after the rising edge of each successive clock cycle, which automatically increments the internal address counter. The RDY output indicates this condition to the system by pulsing low. The device will continue to output sequential burst data, wrapping around to designated address after it reaches the designated location(See Figure 11) until the system asserts $\overline{\text{CE}}$ high, $\overline{\text{RP}}$ low or $\overline{\text{AVD}}$ low in conjunction with a new address. The cold/warm/hot reset or asserting $\overline{\text{CE}}$ high or $\overline{\text{WE}}$ low pulse terminate the burst read operation.

If the device is accessed synchronously while it is set to asynchronous read mode, it is possible to read out the first data without problems.

^{*} Reserved area is not available on Synchronous read

Figure 11. The boundary of synchronous read

4-, 8-,16-, 32- Word Linear Burst Read

As well as the Continuous Linear Burst Mode, there are four(4 & 8 & 16 & 32 word) (Note1) linear wrap-around mode, in which a fixed number of words are read from consecutive addresses. In these modes, the start address for burst read can be any address of address map.

(Note 1) 32 word linear burst read isn't available on spare area BufferRAM

Table 4. Burst Address Sequences

	Start		Burst	Address Sequence(Dec	imal)	
	Addr.	Continuous Burst	4-word Burst	8-word Burst	16-word Burst	32-word Burst
	0	0-1-2-3-4-5-6	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-413-14-15	0-1-2-3-429-30-31
	1	1-2-3-4-5-6-7	1-2-3-0	1-2-3-4-5-6-7-0	1-2-3-4-514-15-0	1-2-3-4-530-31-0
Wrap	2	2-3-4-5-6-7-8	2-3-0-1	2-3-4-5-6-7-0-1	2-3-4-5-615-0-1	2-3-4-5-631-0-1
			•			

Programmable Burst Read Latency

The programmable burst read latency feature indicates to the device the number of additional clock cycles that must elapse after AVD is driven active before data will be available. Upon power up, the number of total initial access cycles defaults to four clocks. The number of total initial access cycles is programmable from four to seven cycles.

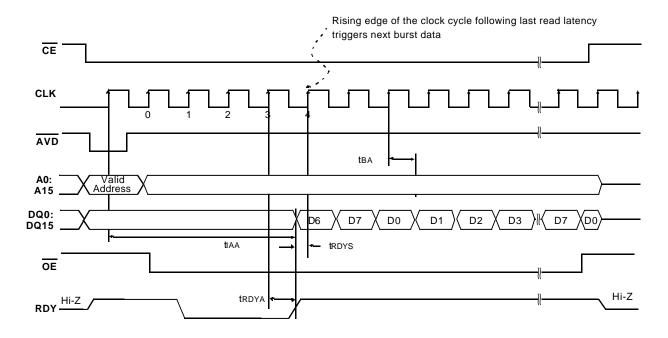
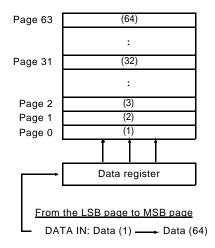
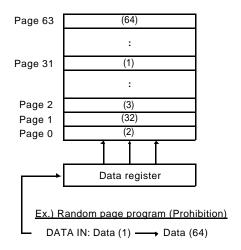


Figure 12. Example of 4clock Busrt Read Latency

Program Operation


The device can be programmed in data unit. Programming is writing 0's into the memory array by executing the internal program routine. In order to perform the Internal Program Routine, command sequence is necessary. First, host sets the address of the Buffer-RAM and the memory location and loads the data to be programmed into the BufferRAM. Second, program command initiates the internal program routine. During the execution of the Routine, the host is not required to provide further controls or timings. During the Internal Program Routine, commands except reset command written to the device will be ignored.


Note that a reset during a program operation will cause data corruption at the corresponding location.

The device provides dual data buffer memory architecture. The device is capable of data-write operation from host to one of data buffers during program operation from anther data buffer to Flash simultaneously. Refer to the information for more details in "Read while Load operation".

Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) pages of the block. Random page address programming is prohibited.

OTP Operation

The device supports one block sized OTP area, which can be read and programmed with the same sequence as normal operation. But this OTP block could not be erased. This block is separated from NAND Flash Array, so it could be accessed by OTP Access command instead of FBA. If user wants to exit from OTP access mode, Cold, Warm and Hot Reset operation should be done.

OTP area is one block size(128KB, 64pages) and is devided by two areas. The first area from 1st page to 10th page, total 10pages,

is assigned for user and the second area from 11th page to 64th page, total 54pages, are occupied for the device manufacturer. The manufacturer area is programmed prior to shipping, so this area could not be used by user.

This block is fully guaranteed to be a valid block.

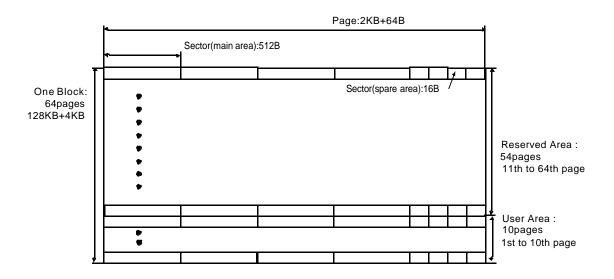
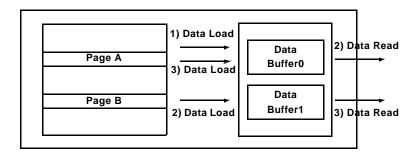
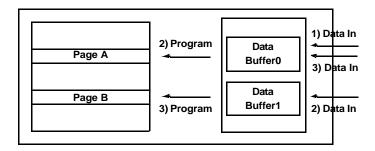
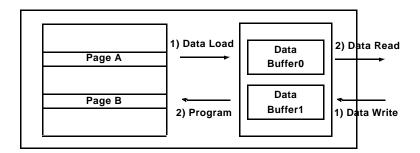



Figure 13. OTP area structure and assignment


Read While Load

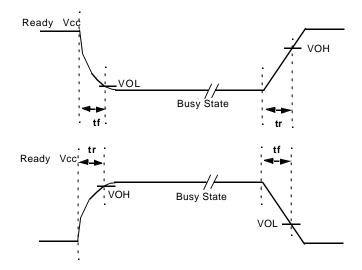
The device provides dual data buffer memory architecture. The device is capable of data-read operation from one data buffer and data-load operation to another data buffer simultaneously. This is so called the Read while Load operation with dual data buffer architecture, this feature provides the capability of executing reading data from one of data buffers during data-load operation from Flash to the other buffer simultaneously. Refer to the information for more details in "Load operation" before performing read while load operation. Not only simutaneous data-load operation from Flash to seperate data buffers is inhitbited, also simultaneous data-read operation from separate buffers to host is inhitbited.

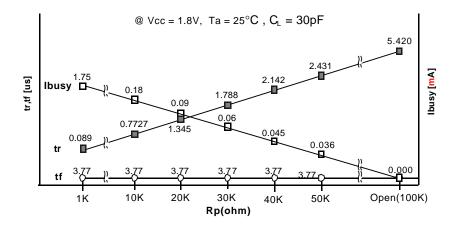
Write While Program


The device provides dual data buffer memory architecture. The device is capable of data-write operation and program operation simultaneously. This is so called the write while program operation with dual data buffer architecture, this feature provides the capability of executing data-write operation from host to one of data buffers during program operation from anther data buffer to Flash simultaneously. Refer to the information for more details in "Program operation" before performing write while program operation. Not only simutaneous data-in operation from host to sepatate data buffers is inhibited, also simultaneous program operation from separate data buffers to Flash is inhibited.

Write While Load and Read While Program

The device provides dual data buffer memory architecture. The device is capable of data-out and program operation simultaneously also data-in and data-load operation simultaneously. This is so called the Write while Load and Read while Program operation with dual data buffer architecture, this feature provides the capability of executing reading data from one of data buffers to host during program operation from another data buffer to Flash, and data-load opration from Flash to one of data buffers during data write operation from host to another data buffer simultaneously. Refer to the information for more details in "Load operation" and "Program operation" before performing read while write operation. Not only simultaneous data-load and data-in operation to the same data buffer is inhibited, also simultaneous data-load and program operation is inhibited.





Interrrupt

The INT pin notifies Host when a command has completed. It is open drain output and does not float to high-z condition when chip is deselected or when outputs are disabled. The INT pin transits to high or low by INT pol bit of System Configuration 1 register when the internal controller has finished the operation.

Because pull-up or pull-down resistor value is related to tr(INT) and current drain during busy(ibusy), an appropriate value can be obtained with the following reference chart. Its value can be determined by the following guidance.

ECC Operation

While the device transfers data from BufferRAM to NAND Flash Array Page Buffer for Program Operation, the device hiddenly generates ECC(24bits for main area data and 10bits for 2nd and 3rd word data of each sector spare area) and while Read operation, hiddenly generates ECC and detects error number and position and corrects 1bit error. ECC is updated by the device automatically. After Load Operation, host can know whether there is error or not by reading 'ECC Status Register' (refer to ECC Status Register Table). Error type is divided into 'no error', '1bit error(correctable) and '2bit error(uncorrectable).

When the device loads NAND Flash Array main and sprea area data with ECC operation, the device doesn't place the newly generated ECC for main and spare area into the buffer but places ECC which was generated and written in program operation into the buffer

Ecc operation is done during the boot loading operation.

Data Protection during Power Down

The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions whenever Vcc is below about 1.3V. $\overline{\text{RP}}$ pin provides hardware protection and is recommended to be kept at VIL before power-down.

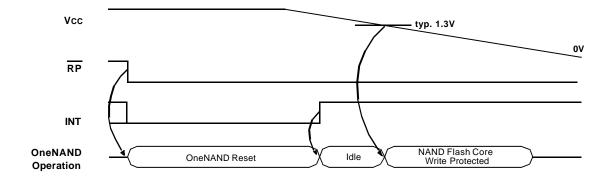


Figure 14. Data Protection during Power Down

Technical Notes

Invalid Block(s)

Invalid blocks are defined as blocks that contain one or more invalid bits whose reliability is not guaranteed by Samsung. The information regarding the invalid block(s) is so called as the invalid block information. Devices with invalid block(s) have the same quality level as devices with all valid blocks and have the same AC and DC characteristics. An invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block.

Identifying Invalid Block(s)

All device locations are erased(FFFFh) except locations where the invalid block(s) information is written prior to shipping. The invalid block(s) status is defined by the 1st word in the spare area. Samsung makes sure that either the 1st or 2nd page of every invalid block has non-FFFFh data at the 1st word of sector0 spare area. Since the invalid block information is also erasable in most cases, it is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the invalid block(s) based on the original invalid block information and create the invalid block table via the following suggested flow chart. Any intentional erasure of the original invalid block information is prohibited.

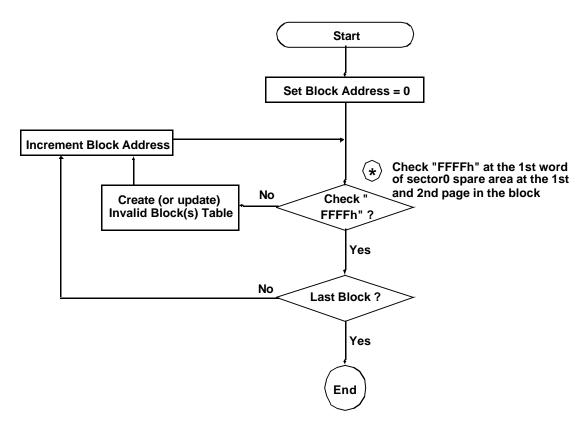
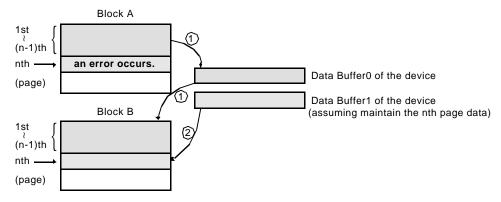


Figure 15. Flow chart to create invalid block table.


Technical Notes (Continued)

Error in write or read operation

Within its life time, additional invalid blocks may develop with the device. Refer to the qualification report for the actual data. The following possible failure modes should be considered to implement a highly reliable system. In the case of status read failure after erase or program, block replacement should be done. Because program status fail during a page program does not affect the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced block.

	Failure Mode	Detection and Countermeasure sequence
Write	Erase Failure	Status Read after Erase> Block Replacement
vviite	Program Failure	Status Read after Program> Block Replacement
Read	Single Bit Failure	Error Correction by ECC mode of the device

Block Replacement

When an error happens in the nth page of the Block 'A' during program operation.

Then, copy the data in the 1st ~ (n-1)th page to the same location of the Block 'B' via data buffer0.

Copy the nth page data of the Block 'A' in the data buffer1 to the nth page of another free block. (Block 'B')

Do not further erase or program Block 'A' but create an 'invalid Block' table or other appropriate scheme.

^{*} Step1

^{*} Step2

Technical Notes (Continued)

OneNAND DDP Technical Note

DDP Chip Selection Register

OneNAND DDP configuration does not require additional pins. NAND Flash Block Address is consicutive between LSB and MSB chips. As seen in the figure below, the LSB Block Address ends at 01FFh(Block 511) and the MSB Block Address begins at 1000h(Block 512). The Device Flash Core Select (DFS) of Start Address 1 Register and the Device BufferRAM Select (DBS) of Start Address 2 Register are used to select the desired LSB or MSB Flash Core and BufferRAM in the DDP.

| LSB Chip | O000h | Block 0 | Block 1 | | Block 510 | Block 511 | | MSB Chip | Block 512 | Block 513 | Block 513 | Block 1022 | | Block 1023 | Bloc

Figure 16. Flash Block Address Map in DDP

Start Address1 Register (R/W): F100h, default=0000h

This Read/Write register is used to select the Flash Core of the LSB or MSB device (DFS).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DFS	Reserved(000000)								FBA						

DFS (Device Flash Core Select): it selects Flash Core in two Flash Core of DDP

FBA (NAND Flash Block Address): NAND Flash block address which will be read or programmed or erased.

Chip	Start Address1 Register	Block Number
LSB Chip	0000h ~ 01FFh	Block0 ~ Block511
MSB Chip	1000h ~ 11FFh	Block512 ~ Block1023

Start Address2 Register (R/W): F101h, default=0000h

This Read/Write register is used to select the BufferRAM of the LSB or MSB device (DBS).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DBS		Reserved(000000000000)													

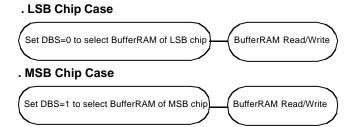
DBS (Device BufferRAM Select): it selects BufferRAM in two BufferRAM of DDP

Technical Notes (Continued)

DDP Chip Selection Operation

Flash Core Array Selection for Unlock Operation

The LSB and MSB Flash Cores in a OneNAND DDP configuration power-up in a locked state and must be unlocked before operation. Set DFS and DBS = "0" to select the LSB Chip or "1" to select the MSB chip, then issue Unlock Command Sequence: Start block address+End block address+Unlock block command.


Note that the LSB and MSB chips must each be unlocked. The default state for Device BufferRAM Select (DBS) and Device Flash Core Select (DFS) = "0", which selects the LSB chip. For more information on lock operations.

. LSB Chip Case Flash Array is locked at Power up Set DBS=0 to select BufferRAM of LSB chip Set DFS=0 to select BufferRAM of LSB chip Unlock MSB Chip Case Flash Array is locked at Power up Set DBS=1 to select BufferRAM of MSB chip Set DFS=1 to select BufferRAM of MSB chip Unlock

BufferRAM Selection for Read/Write Operation

The LSB and MSB chip BufferRAMs operate independently. Select the desired LSB or MSB chip and then execute a BufferRAM Read/Write operation. The default state for Device BufferRAM Select (DBS) and Device Flash Core Select (DFS) = "0", which selects the LSB chip.

For more information on read/write operations.

BufferRAM and Flash Core Selection for Load/Program/Erase/Copy-back/Cache Program/Write Protect Operation

The LSB and MSB chip BufferRAMs operate independently. Select the desired LSB or MSB chip and then execute a BufferRAM Read/Write operation. The default state for Device BufferRAM Select (DBS) and Device Flash Core Select (DFS) = "0", which selects the LSB chip.

For more information on read/write operations.

. LSB Chip Case Set DBS=0 to select BufferRAM of LSB chip Set DFS=0 to select BufferRAM of LSB chip Load/Program/Erase/Copy-back Cache Program/Write Protection Commands . MSB Chip Case Set DBS=1 to select BufferRAM of MSB chip Set DFS=1 to select BufferRAM of MSB chip Cache Program/Erase/Copy-back Cache Program/Write Protection Commands

ABSOLUTE MAXIMUM RATINGS

				Rating		
Parameter		Symbol	KFG1216Q2M KFG1216Q2M	KFG1216D2M KFG1216Q2M	KFG1216U2M KFG1216Q2M	Unit
Voltage on any pin relative	Vcc	Vcc	-0.5 to + 2.45	-0.6 to + 4.6	-0.6 to + 4.6	V
to Vss	All Pins		-0.5 to + 2.45	-0.6 to + 4.6	-0.6 to + 4.6	V
Temperature Under Bias	Commercial	Tbias	-10 to +125	-10 to +125	-10 to +125	°C
Temperature Officer Blas	Extended	i bias	-25 to +125	-25 to +125	-25 to +125	
Storage Temperature		Tstg	-65 to +150	-65 to +150	-65 to +150	°C
Short Circuit Output Current		los	5	5	5	mA
		TA (Commercial Temp.)	0 to +70	0 to +70	0 to +70	
Operating Temperature		TA (Extended Temp.)	-25 to + 85	-25 to + 85	-25 to + 85	°C
		TA (Industrial Temp.)	-	-	-40 to + 85	

NOTES:

RECOMMENDED OPERATING CONDITIONS (Voltage reference to GND)

Parameter	Symbol	1.8V Device 2.65V Device			3	е	Unit				
Farameter	Symbol	Min	Тур.	Max	Min	Тур.	Max	Min	Тур.	Max	Oilit
Supply Voltage	Vcc-Core/ Vcc-IO	1.7	1.8	1.95	2.4	2.65	2.9	2.7	3.3	3.6	V
Supply Voltage	Vss	0	0	0	0	0	0	0	0	0	V

- 1. The system power should reach 1.7V after POR triggering level(typ. 1.5V) within 400us.
- 2. Vcc-Core should reach the operating voltage level prior to Vcc-IO.

^{1.} Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level should not fall to POR level(typ. 1.5V).

Maximum DC voltage is Vcc+0.6V on input / output pins which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.

DC CHARACTERISTICS

Parameter	Sym-	Test Conditions		1.8	3V dev	ice	2.6	5V de	/ice	3.3	Unit		
Farameter	bol	rest Conditions	5	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullit
Input Leakage Current	lu	VIN=Vss to Vcc, Vcc=\	/CCmax	- 1.0	-	+ 1.0	- 1.0	-	+ 1.0	- 1.0	-	+ 1.0	μΑ
Output Leakage Cur- rent	ILO	VOUT=Vss to Vcc, Vcc= , CE or OE=ViH(Note 1		- 1.0		+ 1.0	- 1.0	1	+ 1.0	- 1.0		+ 1.0	μΑ
Active Asynchronous Read Current (Note 2)	ICC1	CE=VIL, OE=VIH		-	8	15	-	10	20	-	10	20	mA
Active Burst Read	ICC2	CE=VIL, OE=VIH	54MHz	-	12	20	-	25	30	-	25	30	mA
Current (Note 2)	1002	CE=VIL, OE=VIH	1MHz	-	3	4	-	5	6	-	5	6	mA
Active Write Current (Note 2)	Іссз	CE=VIL, OE=VIH		-	8	15	-	10	20	-	10	20	mA
Active Load Current (Note 3)	ICC4	CE=VIL, OE=VIH, WE=	VIH	-	10	20	-	15	30	-	15	30	mA
Active Program/Erase Current (Note 3)	ICC5	CE=VIL, OE=VIH, WE=	VIH	-	10	20	-	15	30	-	15	30	mA
Standby Current	ISB	CE= RP=Vcc - 0.2V		-	10	50	-	20	50	-	20	50	μΑ
Input Low Voltage	VIL	-		-0.5	-	0.4	-0.5	-	0.4	0	-	0.8	V
Input High Voltage	VIH	-		VCCIO -0.4	-	VCCIO +0.4	VCCIO -0.4	-	VCCIO +0.4	0.7* VCCIO	-	0.7* VCCIO	V
Output Low Voltage	Vol	IOL = 100 μA , VCC=VC0 VCCq=VCCqmin	Cmin ,	-	-	0.2	-	-	0.2	-	•	0.22* VCCIO	V
Output High Voltage	Vон	IOH = -100 μA,VCC=V0 VCCq=VCCqmin	CCmin ,	VCCIO -0.1	•	-	Vccio -0.4	-	-	0.8*V CCIO	•	-	V

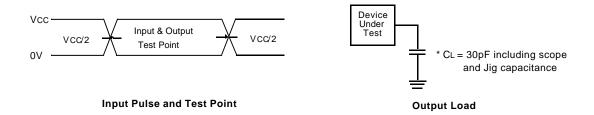
- 1. $\overline{\text{CE}}$ should be VIH for RDY. IOBE should be '0' for INT
- 2. ICC active for Host access
- 3. ICC active while Internal operation is in progress

VALID BLOCK

Parameter	Symbol	Min	Тур.	Max	Unit
Valid Block Number	Nvb	502	-	512	Blocks

Note:

- 1. The device may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is presented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program factory-marked bad blocks.
- 2. The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block.


CAPACITANCE(TA = 25 °C, Vcc = 1.8V/2.65V/3.3V, f = 1.0MHz)

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	CIN1	VIN=0V	-	10	pF
Control Pin Capacitance	CIN2	VIN=0V	-	10	pF
Output Capacitance	Соит	Vout=0V	-	10	pF

NOTE: Capacitance is periodically sampled and not 100% tested.

AC TEST CONDITION(Vcc = 1.8V/2.65V/3.3V)

Par	ameter	Value
Input Pulse Levels		0V to Vcc
Input Rise and Fall Times	CLK	3ns
input Rise and Fail Times	other inputs	5ns
Input and Output Timing Levels		Vcc/2
Output Load		CL = 30pF

AC CHARACTERISTICS Synchronous Burst Read

Parameter	O	KFG12	16X2M	
	Symbol -	Min	Max	Unit
Clock	CLK	1	54	MHz
Clock Cycle	tCLK	18.5	-	ns
Initial Access Time(at 54MHz)	tIAA	-	88.5	ns
Burst Access Time Valid Clock to Output Delay	tBA	-	14.5	ns
AVD Setup Time to CLK	tavds	7	-	ns
AVD Hold Time from CLK	tavdh	7	-	ns
Address Setup Time to CLK	tACS	7	-	ns
Address Hold Time from CLK	tACH	7	-	ns
Data Hold Time from Next Clock Cycle	tBDH	4	-	ns
Output Enable to Data	tOE	-	20	ns
CE Disable to Output High Z	tCEZ ¹⁾	-	20	ns
OE Disable to Output High Z	toez ¹⁾	-	17	ns
CE Setup Time to CLK	tces	7	-	ns
CLK High or Low Time	tCLKH/L	tclk/3	-	ns
CLK ²⁾ to RDY valid	tRDYO	-	14.5	ns
CLK to RDY Setup Time	trdya	-	14.5	ns
RDY Setup Time to CLK	trdys	4	-	ns
CE low to RDY valid	tcer	-	15	ns

Note

1. If <u>OE</u> is disabled before <u>CE</u> is disabled, the output will go to high-z by toez(max. 17ns).

If <u>CE</u> is disabled before <u>OE</u> is disabled, the output will go to high-z by toez(max. 20ns).

If <u>CE</u> and <u>OE</u> are disabled at the same time, the output will go to high-z by toez(max. 17ns).

2. It is the following clock of address fetch clock.

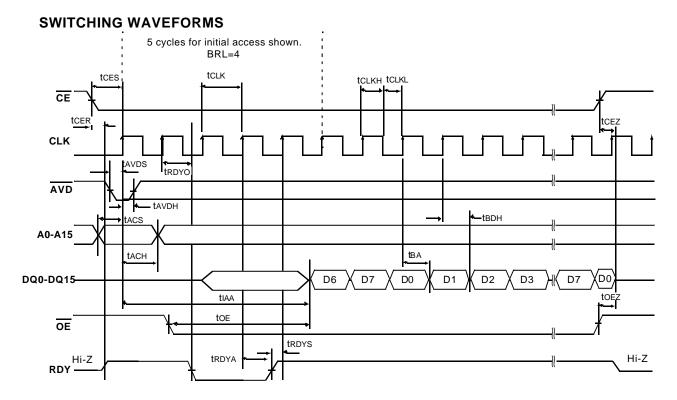


Figure 17. 8 Word Linear Burst Mode with Wrap Around

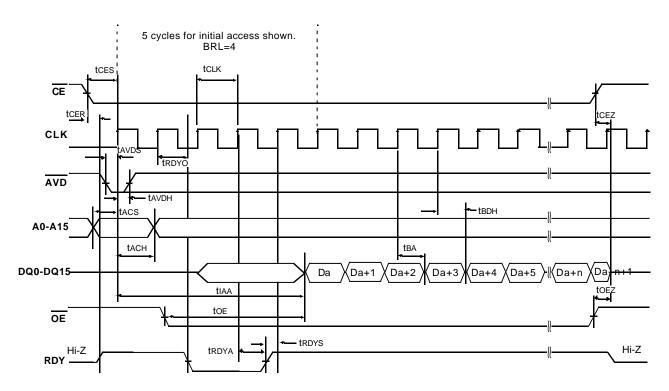


Figure 18. Continous Linear Burst Mode with Wrap Around

NOTE: In order to avoid a bus conflict the $\overline{\text{OE}}$ signal is enabled on the next rising edge after $\overline{\text{AVD}}$ is going high.

AC CHARACTERISTICS Asynchronous Read

Parameter	Symbol	KFG12	Unit	
	Symbol	Min	Max	Onit
Access Time from CE Low	tCE	-	76	ns
Asynchronous Access Time from AVD Low	tAA	-	76	ns
Asynchronous Access Time from address valid	tACC	-	76	ns
Read Cycle Time	trc	76	-	ns
AVD Low Time	tavdp	12	-	ns
Address Setup to rising edge of AVD	taavds	7	-	ns
Address Hold from rising edge of AVD	taavdh	7	-	ns
Output Enable to Output Valid	tOE	-	20	ns
WE Disable to AVD Enable	tWEA	-	15	ns
CE Setup to AVD falling edge	tCA	0	-	ns
CE Disable to Output & RDY High Z ¹⁾	tCEZ	-	20	ns
OE Disable to Output & RDY High Z 1)	toez	-	17	ns

These parameters are not tested 100%.

SWITCHING WAVEFORMS

Case 1 : Valid Address and AVD Transition occur before $\overline{\text{CE}}$ is driven to Low

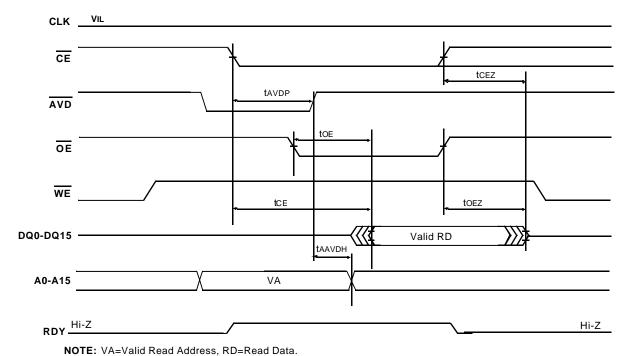
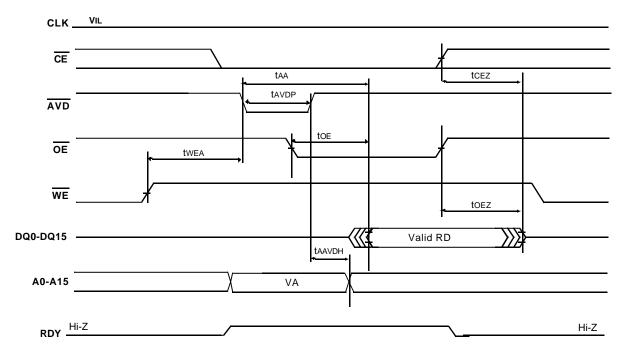


Figure 19. Asynchronous Read Mode(AVD toggling)


NOTE:

1. If OE is disabled before EE is disabled, the output will go to high-z by toez(max. 17ns).

If CE is disabled before OE is disabled, the output will go to high-z by toez(max. 20ns).

If CE and OE are disabled at the same time, the output will go to high-z by toez(max. 17ns).

Case 2: AVD Transition occurs after CE is driven to Low and Valid Address Transition occurs before AVD is driven to Low

NOTE: VA=Valid Read Address, RD=Read Data.

Figure 20. Asynchronous Read Mode(AVD toggling)

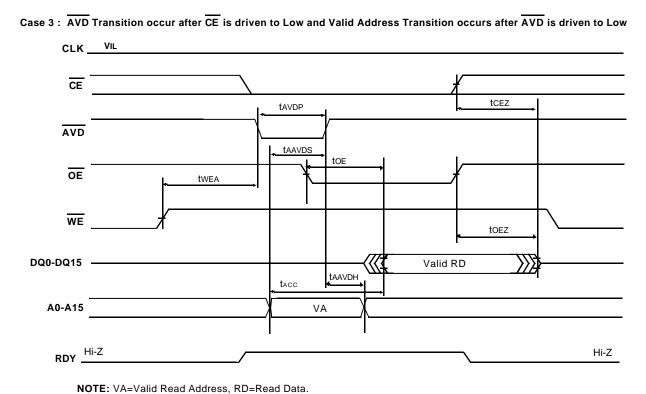


Figure 21. Asynchronous Read Mode(AVD toggling)

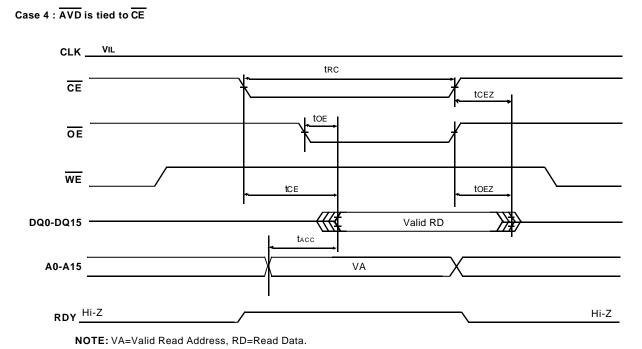
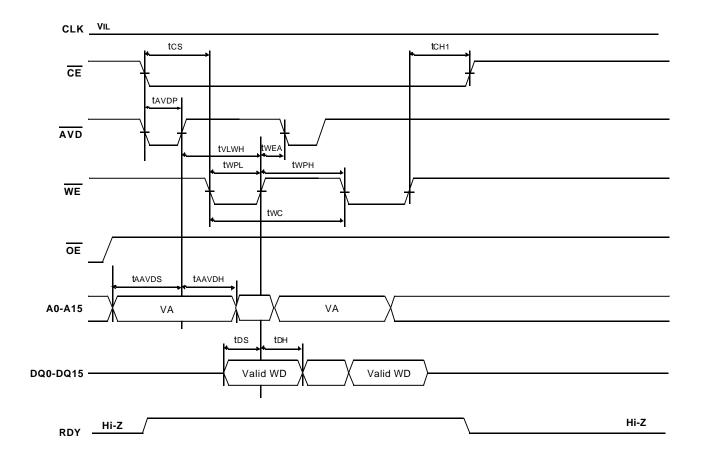
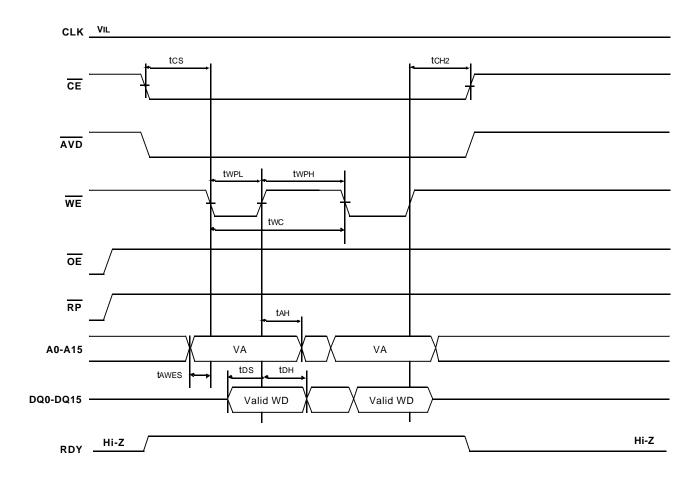


Figure 22. Asynchronous Read Mode(AVD tied to CE)


FLASH MEMORY

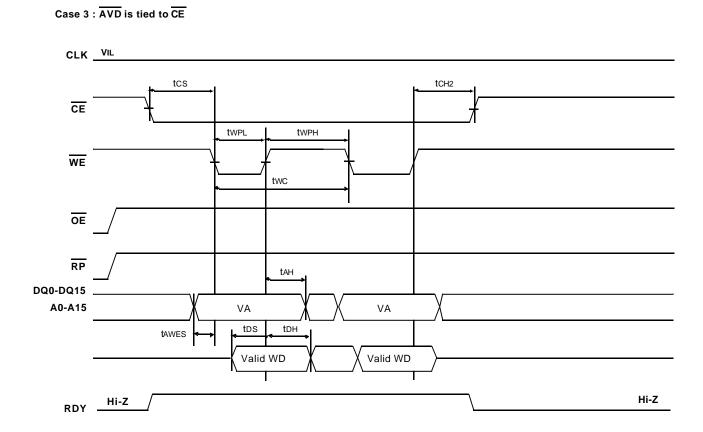
AC CHARACTERISTICS Asynchronous write operation

Parameter		Symbol		KFG1216X2M		11-24
		Symbol	Min	Тур	Max	Unit
WE Cycle Time		twc	70	-	-	ns
AVD low pulse width		tavdp	12	-	-	ns
Address Setup to rising edge of AVD		taavds	7	-	-	ns
Address Setup to falling edge of WE		tawes	0			
Address Hold to rising edge of AVD		t aavdh	7	-	-	ns
Address Hold to falling edge of WE		t ah	10			ns
Data Setup to rising edge of WE		tos	10	-	-	ns
Data Hold from rising edge of WE		toн	4	-	-	ns
CE Setup to falling edge of WE		tcs	0	-	-	ns
CE Hold from rising edge of WE	AVD toggled	tc _{H1}	0	-	-	ns
CE Hold from rising edge of WE	AVD tied to CE	tcH2	10	-	-	ns
WE Pulse Width		twpL	40	-	-	ns
WE Pulse Width High		twpн	30	-	-	ns
AVD Disable to WE Disable		tvLWH	15	-	-	ns
WE Disable to AVD Enable		twea	15	-	-	ns


Case 1 : $\overline{\text{AVD}}$ is toggled every write cycle

NOTE: VA=Valid Read Address, WD=Write Data.

Figure 23. Latched Asynchronous Write Mode(AVD toggling)


Case 2 : $\overline{\text{AVD}}$ is synchronized with $\overline{\text{CE}}$

NOTE: VA=Valid Read Address, WD=Write Data.

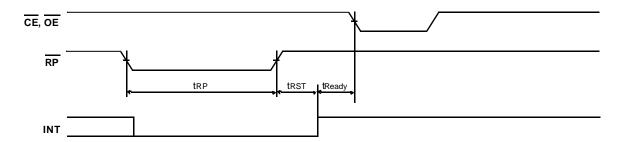
Figure 24. Asynchronous Write Mode(AVD toggling)

NOTE: VA=Valid Read Address, WD=Write Data.

Figure 25. Asynchronous Write Mode(\overline{AVD} tied to \overline{CE})

AC CHARACTERISTICS

Reset


Parameter	Symbol	KFG1216U2M		Unit
r al allietei	Symbol	Min	Max	Oilit
RP & Reset Command Latch(During Read Routines) to INT Pin High (Note)	trst	-	10	μs
RP & Reset Command Latch(During Program Routines) to INT Pin High (Note)	trst	-	20	μs
RP & Reset Command Latch(During Erase Routines) to INT Pin High (Note)	trst	-	500	μs
RP & Reset Command Latch(NOT During Internal Routines) to Read Mode (Note)	trst	-	10	μs
INT Pin High to Read Mode (Note)	tReady	200	-	ns
RP Pulse Width	trp	200	-	ns

NOTE:

Not 100% tested.

SWITCHING WAVEFORMS

Warm Reset

Hot Reset

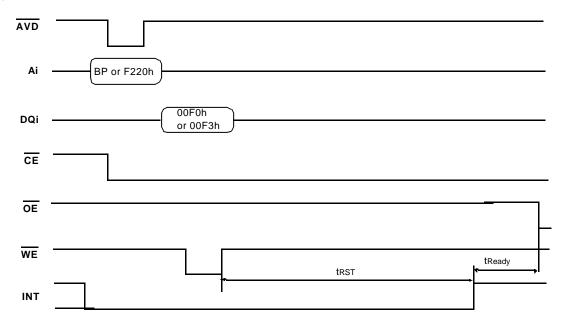


Figure 26. Reset Timing

Performance

Parameter		Symbol	Min	Тур	Max	Unit
Sector Read time (Note 1)		tRD1	-	35	45	μs
Page Read time (Note 1)		trD2	-	75	100	μs
Sector Program time (Note 1)		t PGM1	-	320	720	μs
Page Program time (Note 1)		tPGM2	-	350	750	μs
OTP Access time(Note 1)		tотр	-	300	600	ns
Lock/Unlock/Lock-tight time (Note 1)		tLOCK	-	300	600	ns
Number of Partial Program Cycles in the sector (Including main and spare area)		NOP	•	-	2	cycles
Block Erase time (Note 1)	1 Block	tbers1	-	2	3	ms

^{1.} Not 100% tested. This value is related to the pull-up and pull-down resistor value. Please refer to page 60.

SWITCHING WAVEFORMS

Load Operations

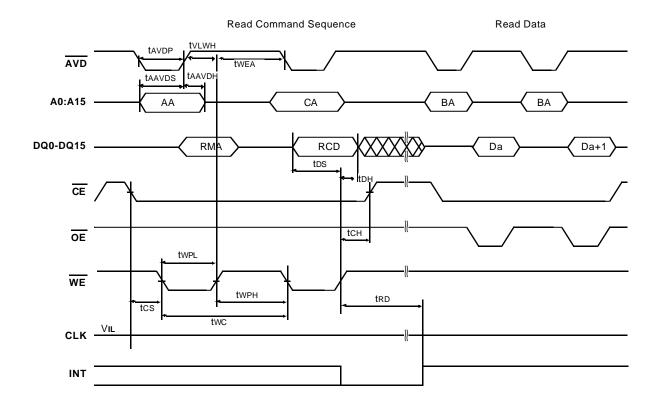


Figure 27. Load Operation Timing

- 1. AA = Address of address register
 - CA = Address of command register
 - $\mathsf{RCD} = \mathsf{Read} \; \mathsf{Command}$
 - RMA = Address of memory to be read
 - BA = Address of BufferRAM to load the data
 - BD = Program Data
 - SA = Address of status register
- 2. "In progress" and "complete" refer to status register
- 3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.

SWITCHING WAVEFORMS

Program Operations

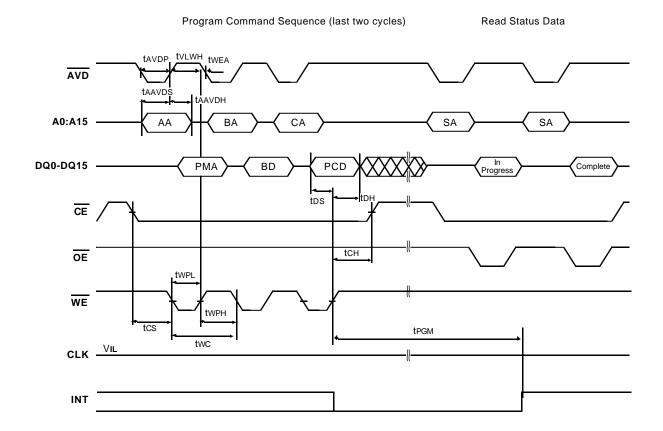


Figure 28. Program Operation Timing

- 1. AA = Address of address register
 - CA = Address of command register
 - PCD = Program Command
 - PMA = Address of memory to be programmed
 - BA = Address of BufferRAM to load the data
 - BD = Program Data
 - SA = Address of status reigster
- 2. "In progress" and "complete" refer to status register
- 3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.

SWITCHING WAVEFORMS

Erase Operation

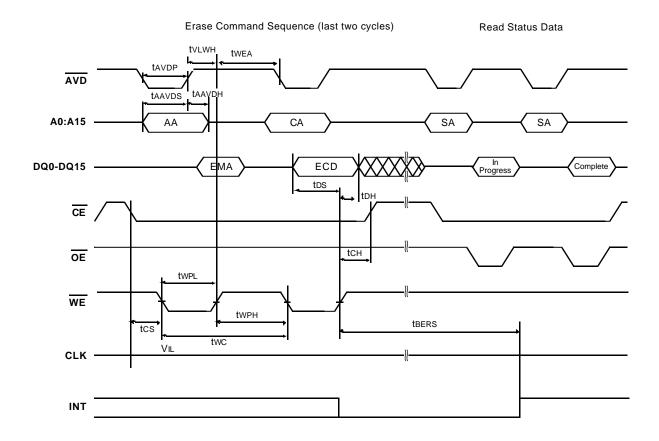


Figure 29. Block Erase Operations

NOTES:

1. AA = Address of address register

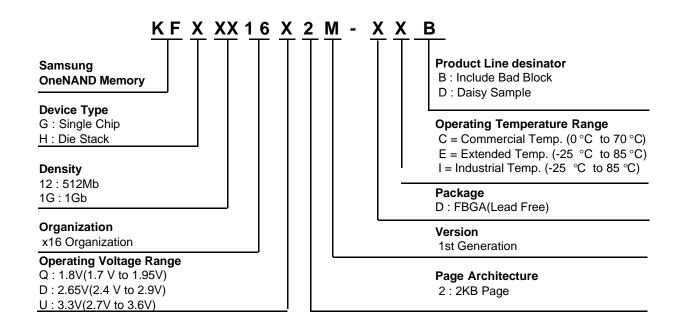
CA = Address of command register

ECD = Erase Command


EMA = Address of memory to be erased

SA = Address of status reigster

- 2. "In progress" and "complete" refer to status register
- 3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.



OneNAND512 PACKAGE DIMENSIONS

ORDERING INFORMATION

